高中数学教育与美育

(整期优先)网络出版时间:2013-12-22
/ 2

高中数学教育与美育

蔡燕燕

商丘市第四高级中学蔡燕燕

长期以来,在中学数学教学中,人们重视基础知识和基本技能的传授与训练,而忽视了美育的渗透。不善于发掘数学本身所特有的美,不注意用数学美来感染诱发学生的求知欲望,激发他们的学习兴趣;不重视引导学生发现数学美,鉴赏数学美,更谈不上引导学生创造数学美,以致使一些学生感到数学抽象枯燥,失去学好的信心。被动的数学学习观念,扼杀了数学的魅力,阻碍了学生学习数学的主动性和探索性,也不符合新课程下素质教育的要求。在2004年的国际华人数学家大会上数学家们传递出这样一个共同的见解——数学很美。数学的美,质朴,深沉,令人赏心悦目;数学的妙,鬼斧神工,令人拍案叫绝;数学的趣,醇浓如酒,令人神魂颠倒。数学的趣味美,体现于它奇妙无穷的变幻,而这种变幻是其他学科望尘莫及的。我们知道美有强烈的感染力,让学生能感受到数学的美,体会到数学的魅力。那么该如何引导学生去领会数学的“美”呢?数学美育在中学数学教学中的作用又如何呢?本文拟就这个问题作一初步探讨。

如果说自然美和艺术美是由视觉、听觉等感官所接受的美感。数学美则是大脑思考所产生的思想结构上的精神美。数学美是一种理性的美、抽象的美。没有一定数学素养的人,不可能感悟数学美,更难以发现数学美。

下面从几个方面来简单的探讨一下在高中数学教学中让学生来感受数学美。

一、数学概念的简洁美

爱因斯坦说过:美,本质上终究是简单性。他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因期坦的这种美学理论,在数学界,也被多数人所认同。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。数学基本概念、理论或公式所呈现的简单性就是一种实实在在的简洁美。而且这一种简洁美中,往往又包含了物质世界的伟力和完美性,使学生学得既轻松又有味。数学的简洁美,用几个定理是不足以说清的,而在数学解题思维中,如能从简洁、朴素的角度出发,审视问题的结构,分析问题的特点,转化思考的方向,常常可以获得简洁明快的效果。

二、和谐性

各种自然形态,特别是动植物的生态以及人类的许多造物形态都有蕴含丰富的数学关系,有丰富的对称美、和谐美。作为反映和研究客观规律的数学科学,集中反映了这种美的特征。数学美的和谐性是指数学内容与结构系统的协调完备和数学所表现出的均衡对称。如果把数学比作一座殿堂,那么和谐性是其主要建筑特色,无论从局部或整体来看,都让人体会到平衡协调、相互呼应、浑然一体的美感。在数学中有很多这样妙不可言的例子。如著名的黄金分割比,即0.61803398…。“黄金分割”问题,为什么它被誉为“黄金”呢?黄金分割比在许多艺术作品中、在建筑设计中都有广泛的应用。达•芬奇称黄金分割比为“神圣比例”。他认为“美感完全建立在各部分之间神圣的比例关系上”。维纳斯的美被所有人所公认,她的身材比也恰恰是黄金分割比。尤其使人惊异的是,许多生物的体形比例也等于黄金比,这些美的信息被充分开发后,谁能不被数学美所陶醉,不为数学美而骄傲呢?古希腊数学家毕达哥拉斯有一句至理名言:“凡是美的东西都具有共同的特性,这就是部分与部分、部分与整体之间的和谐性。”

三、奇异美

数学中新颖的结论、出人意料的反例和巧妙的解题方法都表现出了一种独特的令人惊讶的奇异美。七巧板拼图是小学数学课常采用的内容。用七块板可以拼成一个最简单的正方形,也可以拼出千变万化的复杂图案:如人形、鸟兽、花草、房屋等。通过七巧板拼图练习,学生感到图案之多,出人意料;图形之美,妙趣横生,数学的奇异性很容易激发学生的创造欲望,数学奇异美是学生创新的内驱力。而学生在创造性学习活动中又能感受到数学奇异美,两者之间是相互联系相互促进的。数值计算中的反常设想,奇异的分法,美妙的结果都是数学的奇异美,这种奇异美可以揭发学生的创新欲望,培养创新精神,同时在主动探索的过程中能体验到数学奇异美;应用题教学中,学生表现出新奇独特的、不拘一格的方法,正是学习高明的创新思维能力的体现,在此过程中,学生体验了数学美,从而激发了创新欲望;在几何形体知识的教学时,学生所采用的巧妙方法和产生奇异结果,能使学生在惊异中受到美的熏陶,同时使学生产生追求、向往使用巧妙方法和产生奇异结果,培养了学生的创新精神。

四、协调美、对称美

正如魏尔所说的:“对称是一种思想,多少世纪以来,人们希望借助它来解释和创造秩序、美和完善。它着重追求的是数学对象乃至整个数学体系的合理,匀称与协调。数学概念,数学公式,数学运算,数学方程式,数学结论甚至数学方法中,都蕴含着奇妙的对称性。

毕达哥拉斯学派也认为,一切空间图形中,最美的是球形;一切平面图形中,最美的是圆形。圆是中心对称图形——圆心是它的对称中心,圆也是轴对称图形——任何一条直径都是它的对称轴。这种和谐,对称之美妙不可言。

五严谨性

严谨性是数学的独持之美。它表现在数学定义准确地揭示了概念的本质属性;数学结论存在且唯一,对错分明,不模棱两可;数学的逻辑推理严密,从它的公理开始到演绎的最后一个环节不允许有一句假话,即使错一个符号也不行。此外,数学结构系统协调完备,数学图形美丽和谐,数学语言生动严密等等都表现了数学的严谨性。

总之数学是美的,人的爱美天性在青少年时期表现尤为突出。数学教师理应抓住这个最佳时期,不失时机地向学生揭示数学之美,进行审美教育,充分发挥数学的美育功能。