基于荷载试验的独塔双索面刚构体系斜拉桥受力分析

(整期优先)网络出版时间:2019-10-26
/ 1

基于荷载试验的独塔双索面刚构体系斜拉桥受力分析

朱文忠

济南城建集团有限公司山东济南250000

摘要:某独塔双柱双索面预应力混凝土斜拉桥跨径为2×110m,塔墩梁固结体系,横跨京沪铁路,采用转体施工,转体重量21000t。为了详细了解该桥的受力性能和承载能力是否满足设计及规范要求,为该桥的交工验收及后续的养护提供数据支持,对该桥进行了荷载试验。[1]~[2]。

一、工程概况

该桥为独塔双柱双索面预应力混凝土斜拉桥,塔墩梁固结体系,横跨京沪铁路,采用转体施工,转体重量21000t。跨径为2×110m,桥面标准宽度23.2m,主塔墩总高66.7m(塔座以上),上塔柱为2根一字型箱型截面,下塔柱采用空心倒梯形结构型式。主梁采用双边主梁箱型截面,最低点高度2.6m,桥面设置2%横坡,除0号段和边跨现浇段采用C50外,其它梁段混凝土均采用C60混凝土。设计荷载等级为公路-I级。

二、理论分析及现场试验

(1)模型分析

理论计算采用桥梁专用程序MIDASCIVIL建立斜拉桥空间模型进行整体分析。

(2)索力测试

斜拉索的索力状态是衡量斜拉桥是否处于正常受力状态的一个重要标志,在荷载试验前进行索力测试,不仅能为总体上评估斜拉桥的工作状态提供依据,同时也能在一定程度上反映拉索锚固系统及主塔受力是否正常[3]。

全桥共68根拉索,采用动态信号测试分析系统,分别对左右侧拉索进行测试,并与设计索力对比。

测试采用频率法。频率法是依据索力与索的振动频率之间存在对应关系的特点,在已知索长度、两端约束情况、分布质量等参数时,将高灵敏度的拾振器绑在斜拉索上,拾取拉索在环境振动激励下的振动信号,经过滤波、信号放大、A/D转换和频谱分析即可测出斜拉索的自振频率,进而由索力与拉索自振频率之间的关系获得索力。

计算采用考虑拉索抗弯刚度的索力公式:

注:——对应n阶自振频率的索力;——拉索线密度;——拉索第n阶自振频率;——拉索计算长度;——索的振动阶数;——索的抗弯刚度。

为了减弱日照温度对索力的影响,本次索力测试选择在夜间进行。

图3实测索力与设计成桥索力对比图

通过对实测值的分析,1#、1’#、2#、2’#拉索因内置减震装置对短索索力测试有较大影响,所以仅做参考,不做评价外。该桥其余实测索力值接近设计索力值,且两侧对应索力比较接近,成对称性。

(3)荷载试验

荷载试验分为静载试验和动载试验。

静载试验主要通过在桥梁结构上施加与设计荷载基本相当的外荷载,采用分级加载的方法,利用检测仪器测试桥梁结构的控制部位与控制截面在各级试验荷载作用下的挠度、应变等特性的变化,将测试结果与结构按相应荷载作用下的计算值及有关规范规定值作比较[4]。

根据本桥的结构特点和有限元模型计算结果确定受力最不利截面为控制断面,试验工况为主梁最大正弯矩、最大挠度、墩塔梁固结处最大负弯矩、塔顶纵向偏位、索力增量等13个测试工况。各工况实际试验效率ηq=0.99~1.05,满足JTG/TJ21-2011中试验效率要求(0.95≤ηq≤1.05),说明本次试验能够反映结构的控制截面在设计荷载(公路-I级)下的工作性能。

动载试验主要通过对结构进行脉动测试、跑、跳车试验,测试桥梁结构的自振频率、冲击系数等动力特性参数,将测试结果与理论计算值作比较,得到结构的实际动力特性[5]。

三、试验结果分析

通过试验得到截面实测应变与截面高度的关系曲线接近于直线,实测中性轴与理论中性轴基本吻合,应变沿截面高度分布符合平截面假定。且试验加载前后均未发现裂缝产生,同时也未发现其他异常情况。

各工况的挠度校验系数在0.62~0.83之间,应变校验系数在0.63~0.90之间,塔顶偏位校验系数为0.84,各工况下斜拉索实测索力增量均小于计算索力增量,说明斜拉索受力正常,结构的强度和刚度均满足设计要求。

主桥的实测一阶自振频率(f’1=1.076Hz)高于理论计算频率(f1=0.802Hz),实测冲击系数µ=1.04低于理论冲击系数µ=1.05;说明该桥动刚度和抗冲击性能满足设计要求。

参考文献:

[1]中华人民共和国交通部行业标准﹒公路桥梁荷载试验规程(JTG/TJ21-01-2015)[S]﹒北京:人民交通出版社,2015

[2]中华人民共和国交通部行业标准﹒公路桥梁承载能力评定规程(JTG/TJ21-2011)[S]﹒北京:人民交通出版社,2011

[3]范立础﹒桥梁工程[M]﹒北京:人民交通出版社,2001

[4]宋一凡﹒公路桥梁荷载试验与结构评定[M]﹒北京:人民交通出版社,2002

[5]宋一凡﹒公路桥梁动力学[M]﹒北京:人民交通出版社,2000

作者简介:朱文忠,男,1991.11.16,助理工程师。