凸显数学本质追寻高效课堂

(整期优先)网络出版时间:2011-06-16
/ 1

凸显数学本质追寻高效课堂

薛加付

薛加付江苏省灌云高级中学城西分校222200

数学的教学,最终要教师本人落实到课堂中去,要做到切实提高课堂教学效果,就要求我们教师“凡是你教的东西,就要教得透彻”。教师只有不断揣摩教材,才能对教材有独到的体悟,在课堂教学中也才能做到“精彩纷呈”。数学教师的教学,应拉近数学与学生的距离,让学生感受到它的火热,享受数学中生动的故事,把数学的形式化逻辑链条,恢复为当初数学家发明创新时的火热思考,做到返璞归真。

一、透彻领悟教材的本质思想

为求教得透彻,教师必须深钻教材,“沉下去”,理清知识发生的本原,把握教材中最主要、最本质的东西。

让我们来看一则例子:已知a、b、m都是正整数,并且a<b。说明的理由。这是有关不等式的一道题目,有很多教师通过对糖水浓度的思考,抓住了它的数学本质。

假如令b表示溶液(糖水),a表示溶质(糖),那么是糖水(不饱和)的浓度。现向糖水中再放糖m>0,糖水变甜,这就是不等式的现实意义,也体现了该不等式的价值。

事实上,初中数学有许多问题都具有生活背景和意义。这需要我们教师深入课本用心体会,在教学中发掘问题的内在联系,抽象问题的本质,进而用数学语言(符号)来表达问题的实质。这样引导,对数学本质会有更深的认识。

二、追寻自然、本真的数学

对许多初中学生来说,学数学难,但又必须学。在学生眼里,数学是一个又一个公式、符号、定理、习题的堆积,它们是如此的抽象、散乱、遥远、不可琢磨,它们就像石塑一般——充满着理性精神的美却显得冰冷和生硬。数学本来是这样,还是我们的数学教学的原因?翻看人类的数学思想史,在数学“冰冷的逻辑推理之中有一大堆生动的故事”,其“冰冷美丽”的外表下存在着“朴素而火热的思考”。数学教师的教学,就应拉近数学与学生的距离,让学生感受到它的火热,享受数学中生动的故事,把数学的形式化逻辑链条,恢复为当初数学家发明创新时的火热思考,做到返璞归真。

让我们来看一段函数增减性的教学:

教师:现在最让中国人骄傲的篮球运动员是谁?

学生:姚明。

教师:你们知道姚明的身高是多少?

学生:2.26米。

教师:姚明一出生就是2.26米吗?

众学生:不是。(教师用多媒体展示姚明部分年龄段身高的直方图。)

教师:我们以姚明的年龄为自变量、姚明的身高为函数值建立一个函数关系,能否得到以下结论——姚明身高随年龄增加而增高?

学生有的说对,有的说不对,教师不急于揭示答案,而是把学习的目标引向了函数关系中两个变量变化大小的相互依赖关系上。学生所熟悉的生活实例既是激发学生学习兴趣的手段,也是学生理解函数增减性的现实背景。

接下来,教师让学生观察函数y=x2(x≥0)图像的x值与y值的动态变化效果,得出如下结论:

(1)函数的图像向坐标系右上方延伸;

(2)随x取值的增大,y的值越来越大。

这时,教师可以总结:这种随x的增大y也增大的现象称为y随x的增大而增大。类似地,在学生观察了函数y=x2(x≤0)图像的动态效果后,得出这种随x的增大y越来越小的现象称为y随x的增大而减小。

通过一个生活背景的实例和对函数y=x2图像的直观观察,产生了函数增减性的生活语言的描述,使学生理解到的是两个变量之间具有依赖性的增减关系。这是函数增减性中最为基本和初始的思想,是根本性的要素,也是从生活中的原初思想迈向数学知识的关键一步。

三、在学生原有的知识体系上进行重新建构

“万丈高楼起于平地,千里之行始于足下。”学生能接受新知识是建立在其原有的基础水平之上。教师应该以学生现有的思维发展水平为依据,关注学生已有的知识和经验,选择与学生发展水平相适应的学习材料,为学生设置恰当的教学情境,使学生对新知识进行充分的思维加工,通过新知识与已有认知结构之间的相互作用,使新知识同化到已有认知结构中去,达到对新知识的相应理解和主动建构。

(1)有两个商场在节前进行商品降价酬宾销售活动,分别采用两种降价方案:甲商场是第一次打p折销售,第二次打q折销售;乙商场是两次都打折销售。请问:哪个商场的价格最优惠?

(2)今有一台天平两臂之长略有差异,其他均精确。有人要用它称量物体的重量,只需将物体放在左右两个托盘中各称一次,再将称量结果相加后除以2就是物体的真实重量。你认为这种做法对不对?如果不对的话,你能否找到一种用这种天平称量物体重量的正确方法?

以上两个问题,其情境贴近生活、贴近实际,与学生的认知相符合,给学生创设了一个观察、联想、抽象、概括、数学化的过程。在这样的基础上,再注意给学生动手、动脑的空间和时间,往往能取得良好的教学效果。

综上所述,本人认为,高境界的数学课堂教学必须呈现“数学本质”。“持之以恒,贵在变通”,在数学的教学过程中,在领会知识的同时,要让学生理解数学最本质的方法、朴素的思想,同时又要重视基础知识、基本技能和基本思想方法;重视通性通法,注重数学问题解决过程中的挖掘、提炼与渗透,挖掘数学知识本身的内在本质,增强运用数学思想方法解决问题的意识和自觉性,重视运用所学知识分析问题和解决问题的能力,而不是简单地掌握知识,解决“会”与“对”的矛盾。只要这样,就一定会让学生在学习数学和教师在教数学的过程中都找到乐趣,提高学生的数学素养和能力。