范晓杰
浙江省嘉兴市交通工程质量安全监督站314000
摘要:本文以一个大跨径的混合梁斜拉桥为例,采用大型有限元分析软件madiscivil建立模型,用子空间迭代法对模态进行求解,得出了自振频率、振型,并结合混合梁斜拉桥的结构特点分析其动力特性。在此基础上考虑分别在横向和纵向输入地震波,用反应谱法分析产生的影响。结果表明,前十阶振型中竖向振型较多,频谱较为密集,没有出现扭转振型,纵向、横向的振型耦联效应较小等,为目前其他同类型混合梁斜拉桥的动力特性分析研究提供参考。
一、工程概况
永川长江大桥主桥全长1008m,跨径布置为(64+68+68+608+68+68+64)m的7跨半漂浮体系混合梁斜拉桥,边跨设置1个过渡墩,2个辅助墩。索塔采用宝瓶型钢筋混凝土索塔,塔高分别为196.7m、207.4m。边跨为预应力PK断面混凝土箱梁,中跨也为同外形的PK断面钢箱梁,梁高3.5m,宽37.6m。拉索为双索面扇形构造,边跨11对索间距为10m,7对索间距为8m,主跨索间距为15m。
二、斜拉桥的动力特性分析
结构的动力响应取决于结构本身的动力特性和外部荷载的激励,所以在进行抗风稳定、抗震分析时往往得先进行自振特性分析。
采用子空间迭代法计算自振频率及相应的振型如表3.1所列。
表3.1桥梁的自振特性
一阶振型为纵飘,这是由于斜拉桥的设计主要考虑控制结构的横向和竖向变位,而允许纵向移动,很好的提高了桥梁的抗震能力。
二阶振型为主梁对称竖弯,主梁的竖弯也会引起桥塔的纵向弯曲,从表3.1中可以发现在前十阶振型中出现较多的主梁对称和反对称竖弯,因此在抗震设计中要着重考虑主梁的竖向和桥塔的纵向位移。
三阶振型为主梁对称横弯,这说明了主梁的横向刚度较小,抗风稳定性较差,在抗震设计中也应该注意控制。
结构的一阶对称竖弯、横弯振型出现在2、3阶,根据经验这符合大跨度斜拉桥的动力特性的一般特点。
表3.1中没有出现扭转振型,这符合双索面、箱梁布置的斜拉桥动力特性,抗扭刚度较大。
本桥的前十阶振型自振频率在0.0823~0.8684,说明结构的模态比较密集,在动荷载作用下许多振型容易被引起强烈的振动。
在前十阶振型中出现了很多的主梁竖向弯曲,这是由于混合梁斜拉桥中钢箱梁的刚度小于混凝土梁的刚度而引起的。
为了分析本桥的纵、横向的耦联效应,分别在纵向、横向输入地震波。考虑该桥所在区域抗震设防烈度为7度,场地类别为Ⅰ类,选择主梁的内力值进行分析,结果如表3.2所示,塔顶、跨中的位移如表3.3所示。
表3.2主梁内力值分析结果
表3.3塔顶、跨中位移值(单位:mm)
横向地震反应引起的主梁反应主要是y方向的剪力和弯矩,且混凝土梁的反应大于钢箱梁;而x方向、z方向的剪力及弯矩都较小。纵向地震反应时主梁x、z方向剪力及弯矩较大,说明在输入纵向地震反应时结构会产生竖向内力,混凝土梁的反应亦大于钢箱梁。符合混合梁斜拉桥的主梁受力特点:通过提高边跨主梁结构的刚度和重量可以很好的减少主跨刚箱梁的内力,从而增大跨径。
在输入纵向地震反应时,主梁横向内力很小;而在输入横向地震反应时,主梁纵向内力也很小,说明了结构纵横两个方向振型耦联效应较小。
在斜拉桥设计时允许结构纵飘,且其1阶振型为主梁纵飘、主塔纵弯,而一阶横弯振型出现在3阶,故在输入纵向地震反应时塔顶、跨中的纵向位移明显大于其在输入横向地震反应时的位移,
结束语
本文主要分析混合梁斜拉桥的动力特性,计算出了其前十阶自振频率及相对应的振型。结合钢混结合梁的结构特点,分析结构在横向、纵向地震波作用时产生的影响。得出如下结论:
(1)结构的一阶自振频率为0.0823,周期为12.1574,属于长周期结构。说明结构刚度较小,是柔性结构。
(2)在结构的前十阶振型中以竖弯振型为主,未出现扭转振型,说明主梁竖向刚度较小,抗扭刚度较大。
(3)由纵、横两个方向的地震反应分析得出纵向和横向振型的耦联效应不明显。