离散数学与计算机专业学习的关系

(整期优先)网络出版时间:2010-04-14
/ 2

离散数学与计算机专业学习的关系

周庆平

周庆平(唐山师范学院,唐山063000)

摘要:离散数学不但是数学中涉及面非常广的课程而且是计算机科学与技术专业的一门重要的专业基础课程,特别是近几十年来,由于计算机的迅速发展与广泛应用,大量与数学相关的实际问题往往需首先转化成离散数学的问题。本文就离散数学与计算机专业课程进程中的相关问题做出自身的评判。

关键词:离散数学;离散建模;课程改革

中图分类号:TP3-05文献标识码:A文章编号:1006-4311(2010)10-0204-02

0引言

离散数学课程自上世纪70年代出现以来一直是计算机专业的核心课程之一,离散数学课程的教学目的,不但作为计算机科学与技术及相关专业的理论基础及核心主干课,对后续课程提供必需的理论支持。计算机专业中这样重要的课程竟会出现这样奇怪的现象,不禁使人疑惑:离散数学到底出了什么问题?

更重要的是旨在“通过加强数学推理,组合分析,离散结构,算法构思与设计,构建模型等方面专门与反复的研究、训练及应用,培养提高学生的数学思维能力和对实际问题的求解能力。”

由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理

1课程的目标定位

在长达三十余年的课程发展历史中,离散数学在计算机专业,特别是应用型计算机专业中的目标定位,要改变离散数学目前的局面首先需从明确目标定位做起。

1.1一般认为,应用型本科计算机专业目标定位有掌握离散数学的基本理论与方法,同时培养抽象的离散思维能力与逻辑思维能力。为诸多后续课程提供支持。用于计算机领域的离散建模。大多数人怀疑用于计算机领域的离散建模。作为计算机学科工具,离散建模是离散数学区别高等数学的根本之处,是使离散数学成为计算机专业核心课程的原因之一,也是离散数学与计算机紧密关联之处由此可看,明确这个目标定位是离散数学课程改革的当务之急。

1.2离散数学是计算机科学与技术应用与研究的有力工具计算机专业人员通过离散数学逻辑思维能力与抽象思维能力的培养,在这些能力的作用下使他们的应用、研究能力有所提高。这种说法虽有一定道理,但远不止如此。离散数学成为计算机专业的核心课程,主要原因就是由于它与计算机学科直接的、紧密的关联,特别是它作为研究与应用计算机学科的工具,历史的发展可以证明这一点。

在计算机的发展历史中,离散数学起着至关重要的作用,在计算机产生前,图灵机理论对冯#8226;诺依曼计算机的出现起到了理论先导作用;布尔代数作为工具对数字逻辑电路起到指导作用;自动机理论对编译系统开发的理论意义、谓词逻辑理论对程序正确性的证明以及软件自动化理论的产生都起到了奠基性的作用。此外,应用代数系统所开发的编码理论已广泛应用于数据通讯及计算机中,而应用关系代数对关系数据库的出现与发展起到了至关重要的作用。近年来,离散数学在人工智能、专家系统及信息安全中均起到了直接的、指导性的作用。以上充分证明,离散数学在计算机科学与技术的研究与开发中作为一种强有力的工具,起着重要作用。

1.3离散建模是离散数学应用于计算机学科的有效手段离散数学在计算机科学中占有相当重要的地位。因此我们要较好的把握离散数学学习。离散数学与计算机学科发生关系,主要通过离散建模实现了从离散数学到计算机领域的应用。

首先,对计算机(或客观世界)中的某领域建立起一个抽象的形式化(离散)数学模型,称离散模型,而建立模型过程称离散建模。该领域的研究归结为对离散模型的研究。其次,用离散数学的方法对离散模型求解,由于离散模型具有强大的离散数学理论支撑,因此对它的求解比对领域的求解更为有效。最后,可将离散模型的形式化解语义化为某领域的具体结果。

这样,我们可以将对某领域的研究通过建立离散模型而归结为对离散模型的研究,最后可将其研究数学结果返回为领域中的语义结果从而最终实现问题求解的目的。

有关的研究例子有很多,如在数据库研究中建立的关系代数模型、在编译系统中建立的自动化模型、在数字逻辑电路中建立的布尔代数模型以及在数据通讯中建立的纠错码模型等。

下面以关系代数模型为例说明离散数学对计算机科学技术发展的作用。对数据库领域的研究始于上世纪60年代,最初采用的是图论模型从而形成了当时有名的层次数据库与网状数据库,它们对构作数据静态结构起着重要作用。在数据的动态结构要求与数据操作要求越加重要形势下,IBM公司F.F.Codd于1970年提出了数据库的关系代数模型。该模型用离散数学中的关系表示数据库中数据结构,用代数系统中的代数运算表示数据库中的动态结构与数据操作要求。这个离散模型较为真实地反映了数据库发展的需求,因而成为当时数据库中最为流行的模型,它称为关系模型。

2数学建模与计算机的关系

随着计算机的出现和广泛应用,计算机软硬件技术的迅速发展,数学的应用已从物理领域深入到经济、生态、环境、医学、人口和社会等更为复杂的非物理领域。今天,许多基础学科已从定性描绘走向定量分析,边缘学科不断涌现;数学在金融、经济、工程技术以及自然科学中具有广泛的应用,它的重要性已逐渐成为人们的共识。利用数学方法解决实际问题时,要求从实际错综复杂的关系中找出其内在规律,然后用数字、图表、符号和公式把它表示出来,再经过数学与计算机的处理,得出供人们进行分析、决策、预报或者控制的定量结果。数学建模过程需要经过模型假设、模型建立、模型求解、模型分析与检验、模型应用等几个步骤,在这些步骤中都伴随着计算机的使用。

计算机的产生正是数学建模的产物,20纪40年代,美国为了研究弹道导弹飞行轨迹的问题,迫切需要一种计算工具来代替人工计算,计算机在这样的背景下应运而生。计算机的产生与发展又极大地推动了数学建模活动,计算机高速的运算能力,非常适合数学建模过程中的数值计算;它的大容量贮存能力以及网络通讯功能,使得数学建模过程中资料存贮、检索变得方便有效;它的多媒体化,使得数学建模中一些问题能在计算机上进行更为逼真的模拟实验;它的智能化,能随时提醒、帮助我们进行数学模型求解。此外,如Mathlab、Maple、SAS、SPSS等一批优秀数学软件的出现更使数学建模如虎添翼。再者,数学建模与生活实际密切相关,所采集到的数据量多,而且比较复杂,比如DVD在线租赁,长江水质的评价和预测,银行贷款和分期付款等,往往计算量大,需要借助于计算机才能快捷、简便地完成。数学建模竞赛与以往所说的那种数学竞赛(纯数学竞赛)不同,它要用到计算机,甚至离不开计算机,但却又不是纯粹的计算机竞赛,它涉及到物理、化学、生物、医学、电子、农业、军事、管理等各学科、各领域,但又不受任何一个具体的学科、领域的限制。数学建模过程需要经过模型假设、模型建立、模型求解、模型分析与检验、模型应用等几个步骤,在这些步骤中都伴随着计算机的使用。例如,模型求解时,需要上机计算、编制软件、绘制图形等,数学建模竞赛中打印机随时可能使用,同时,数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展做出杰出贡献的科学家都出身于数学专业,显而易见,比赛中的一个重要环节是使用计算机来解决问题,这对使用计算机的能力的提高是很明显的。

数学模型是描述实际问题数量规律的、由数学符号组成的、抽象的、简化的数学命题、数字公式、图表或算法。当我们使用数学方法解决实际问题时,首先要把实际事物之间的联系抽象为数学形式,这就是数学建模。在数学教学中,利用数学建模,可提高学生的运算能力、分析推理能力,进而提高解决问题和探究问题的能力。

数学建模的目的是构建数学建模意识,培养学生创造性思维能力,在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力,培养创造性思维能力,主要应培养学生灵活运用基本理论解决实际问题的能力,在数学教学中培养学生的建模意识实质上是培养、发展学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动,它既具有一定的理论性,又具有较强的实践性,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立、自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力、直觉思维、猜测、转换、构造等能力,而这些数学能力正是创造性思维所具有的最基本的特征,在培养创新思维过程中要求必须具有一定的计算机基础,只有具有一定的计算机知识才能更好的处理数据,发现事物之间的内在的联系,才能更好的进行知识的转换,才能更好的构造出最优的模型。总之,具有必备的计算机知识是培养建模意识的关键,是培养数模创新能力的前提。计算机也为数学建模竞赛活动提供了有力的工具。

3结语

结合计算机日益广泛应用的需求,在实际的教学中我们将数学与计算机的结合教学进行了一些尝试,也取得了一定的效果。但是随着计算机应用的日益普及,离散数学在计算机科学的研究和应用中越来越受到重视,对离散数学的教学提出了更高的要求,需要进一步深入研究和探讨。