应用近红外光谱技术建立烟草17项主要化学成分的快速无损检测方法.收集700个具有代表性样品的光谱,建立其相应指标的近红外模型.在所有的校正模型中,原始谱图经过一阶导数和偏最小二乘(PLS)处理,大约50个外部样品用于所建模型的验证.烟草中总挥发酸、总挥发碱、石油醚提取物总量、石油醚提取物中性成分、多酚、淀粉、纤维素、硫酸根、pH、灰分、水溶性灰分碱度、总糖、还原糖、总氮、生物碱、氯、钾等十七项指标的预测标准偏差(BMSEP)分别为0.020、0.009、0.402、0.393、0.578、0.583、0.932、0.139、0.117、0.634、0.235、1.720、1.407、0.104、0.173、0.037和0.300.该结果表明近红外光谱技术在分析17项烟草化学指标时均可以替代经典化学方法.作为一种质量控制方法,近红外光谱技术的应用将为烟草行业节省大量的资金和显著提高工作效率.