高兴兵(湖北宜城三中湖北宜城441400)
中图分类号:G633.2文献标识码:A文章编号:1671-5691(2018)01-0118-01
在教学中,我认识到应该正确对待高中新课程数学教学中的问题,并要采取积极的措施加以解决。
首先,教师对新教材认识存在的问题。实验产生的问题不能都归咎于课程标准或教材,也有教师的原因。
例如,对“课时不够”,固然课程标准和教材有值得商榷之处,但反思我们的教学,恐怕有些原因还是出于自身。不少教师习惯参照高考命题,对某些知识点延拓加深。原来教学相对较少、课时较多,可以这样做。但新课程对内容的处理和教学要求与原有大纲有较大不同,如果仍延续原有习惯,课时量就可能不够。
又如,过去习惯要求学生完成教材全部习题(包括练习和复习题),但新教材却有很多学生不会做的,于是有人认为教材习题太难。事实上,高中数学课程标准要求,数学课程要适应人性选择,使不同的学生得到不同的发展。为适应这一要求,教材将习题编成三种层次,供学生选做。因此有些习题有学生不会做也不奇怪,这说明过去的某些观念要改。
其次,对必修课程与选修课程的关系及具体内容的界定不够清晰。举例说,高中几何分“立体几何”和“解析几何”两部分。“立体几何”分“立体几何初步”和“空间中的向量与立体几何”;“解析几何”分“平面解析几何初步”和“圆锥曲线与方程”。必修课程仅要求学生掌握“立体几何初步”和“平面解析几何初步”,其定位是清楚的。“立体几何初步”以三个载体(三视图、直观图、点线面的位置关系)帮助学生认识空间图形及其位置关系,建立空间想象能力,并在几何直观的基础上,初步形成对空间图形的逻辑推理能力。
这对于只希望在人文、社会科学发展的学生来说,已经达到基本要求。而对于希望在理工(包括部分经济类)等方面发展的学生,还需要学习“空间中的向量与立体几何”。这部分内容借助向量定量地处理空间图形的位置关系与度量问题。向量既是几何对象,又是代数对象,还有很好的物理背景,自然成为搭建几何和代数联系的一座桥梁。
第三,努力领会高中数学课程标准的基本理念和目标,掌握课程设计思路。教师在研究普通高中数学课程标准中,应努力领会其基本理念和目标,掌握课程设计思路,熟悉必修课程的内容标准,创造性地使用新教材。新教材的教学从“知识传授”的传统模式转变到“以学生为主体”的参与模式,注重数学思想方法的渗透和良好的思维品质的养成,注重学生创造精神和实践能力的培养,符合素质教育的要求,是其根本所在。在实践中,应发挥学生的主动性和创造性,灵活使用教材,设计新的教学过程,把数学知识转化为激发学生的“药引”,引发进取心和求知欲。另外,要加强对不同版本教材的比较研究。
各校高中数学备课组最好能备齐至少五个版本的教材。要摒弃“轻大纲,重教材”、“教学即等于教教材”的旧观念,树立“以课标为依据,以教材为素材,充分利用多种资源来进行教学”的新观念。
对新课程教学内容的处理,我认为大体按以下三点来把握:
(1)对已删内容,如所有版本教材都未出现,一般不要再捡回,如指数方程和对数方程的解法、指数不等式和对数不等式的解法、线段的定比分点、已知三角函数值求角、三角方程和反三角函数,极限等。
(2)对有不同处理方式的内容,一般应按所教版本教学。如有不同处理方式在另外版本出现,对解题可能产生影响,则应适当告诉学生。如函数概念的引入,可先讲函数,后讲映射;也可先讲映射,后讲函数。
(3)对新增内容,教材不同版本的表达方式和选用例、习题有差异。备课时,如能多参考一些版本,必能帮助加深理解,提高水平和效率。
目前,高中数学新课程教学大体可分为三个阶段:必修课教学阶段,选修系列1、2教学阶段,总复习阶段。前阶段是后阶段的基础,前阶段知识会在后阶段中得到巩固、应用、延拓和加深。不同生源层次的学校在同一知识内容的教学要求上是应该有区别的。即使是同一学校,对具有不同数学水平的学生,要求也应有所不同。例如,教材中的练习题、习题和复习题中的A组题应要求所有学生完成,但B、C两组题较难,一般只要求数学基础较好的学生选做即可。
高中数学新课程的改革,任重而道远。推进此改革,是目前教育改革和发展的一项重要任务,需要不断探索,不断反思,不断总结,不断解决问题。