ON THE BREAKDOWNS OF THE GALERKIN AND LEAST-SQUARES METHODS

(整期优先)网络出版时间:2002-02-12
/ 1
TheGalerkinandleast-squaresmethodsaretwoclassesofthemostpopularKrylovsubspacemethOdsforsolvinglargelinearsystemsofequations.Unfortunately,boththemethodsmaysufferfromseriousbreakdownsofthesametype:InabreakdownsituationtheGalerkinmethodisunabletocalculateanapproximatesolution,whiletheleast-squaresmethod,althoughdoesnotreallybreakdown,isunsucessfulinreducingthenormofitsresidual.Inthispaperwefrstestablishaunifiedtheoremwhichgivesarelationshipbetweenbreakdownsinthetwometh-ods.Wefurtherillustratetheoreticallyandexperimentallythatifthecoefficientmatrixofalienarsystemisofhighdefectivenesswiththeassociatedeigenvalueslessthan1,thentherestart-edGalerkinandleast-squaresmethodswillbeingreatrisksofcompletebreakdowns.Itappearsthatourfindingsmayhelptounderstandphenomenaobservedpracticallyandtoderivetreat-mentsforbreakdownsofthistype.