TheGalerkinandleast-squaresmethodsaretwoclassesofthemostpopularKrylovsubspacemethOdsforsolvinglargelinearsystemsofequations.Unfortunately,boththemethodsmaysufferfromseriousbreakdownsofthesametype:InabreakdownsituationtheGalerkinmethodisunabletocalculateanapproximatesolution,whiletheleast-squaresmethod,althoughdoesnotreallybreakdown,isunsucessfulinreducingthenormofitsresidual.Inthispaperwefrstestablishaunifiedtheoremwhichgivesarelationshipbetweenbreakdownsinthetwometh-ods.Wefurtherillustratetheoreticallyandexperimentallythatifthecoefficientmatrixofalienarsystemisofhighdefectivenesswiththeassociatedeigenvalueslessthan1,thentherestart-edGalerkinandleast-squaresmethodswillbeingreatrisksofcompletebreakdowns.Itappearsthatourfindingsmayhelptounderstandphenomenaobservedpracticallyandtoderivetreat-mentsforbreakdownsofthistype.