浅析贝雷法参数计算公式的修正方法

(整期优先)网络出版时间:2022-07-13
/ 2

浅析贝雷法参数计算公式的修正方法

赵伟伟

320921198111292010

摘 要: 贝雷法提出了3个参数CAFACFAF,为混合料级配检验提供了一个有效办法,并且可应用于沥青混凝土路面芯样级配的评价。本文对贝雷法应用于AC级配的适用性进行了研究,对参数计算公式进行了修正,并基于规范推荐的级配范围,提出了适用于AC级配的合理参数值范围。

关键词: 沥青混合料;贝雷法修正;级配检验

理想的骨架密实结构应该是基于粒子干涉理论的逐级填充原则,颗粒之间的空隙, 应由次一级颗粒填充, 其余空隙又由次小一级颗粒填充……, 直至最终由沥青胶浆填满空隙。将一堆固体颗粒填充到某个空间的问题, 人们已经研究了 300多年, 诸多行业的学者都在研究矿料的级配方式, 诞生了一些级配理论和级配设计方法。众多设计方法之中,美国罗伯特·贝雷(Robert Bailey)首先提出的贝雷法以其独特的设计和检验方法,被工程实践证明可以获得具有良好使用性能的多级嵌挤密级配沥青混合料, 尤其提出的3个检验参数(CAFACFAF), 对指导混合料设计和检验级配有着重大意义, 可以应用于沥青混凝土路面芯样的级配评价。但由于级配的分级分类、试验压实标准以及真正路面状况等不同, 要把贝雷法引入我国, 必须对我国常用的混合料级配进行适用性分析后, 提出适用于我国的合理参数范围才能广泛使用。贝雷法提出了3个参数CAFACFAF,为混合料级配检验提供了一个有效办法,并且可应用于沥青混凝土路面芯样级配的评价。

贝雷法粗细集料用量的确定原则为使粗集料形成嵌挤,粗集料用量是根据粗集料的松装密度与干捣实密度的体积特征确定,根据山东交通科研所的研究,认为“应在松装密度开始,最大不超过松装密度与干捣实密度的平均值”,而“细集料的选择则从干捣实密度开始,最小不超过干捣实密度与松装密度的平均值”。目前规范规定的沥青混合料配合比级配设计要求,在工程设计级配范围内试配1-3组粗细不同的配合比级配曲线,分别位于工程设计级配的上方、中值、及下方。设计合成级配曲线要求顺滑,不得有太多的锯齿交错。依据当地的实践经验,选取适宜的沥青用量,分别制作几组马歇尔试件,测定VMA ,初选1或2组接近设计要求的级配作为设计级配,进而通过试配修正试验的反复过程来确定矿料级配,使设计的矿质混合料形成适宜的空隙结构(即符合设计要求的矿料间隙率VMA、空隙率VV、沥青填隙率VFA)。

1 贝雷法3参数CAFACFAF

本文对贝雷法应用于AC级配的适用性进行了研究,对参数计算公式进行了修正,并基于规范推荐的级配范围,提出了适用于AC级配的合理参数值范围。贝雷法设计的数学模型是将集料颗粒抽象为二维平面圆扁模型,3个颗粒接触组合分为全部为圆、二圆一扁、一圆二扁、全部为扁共4种形式,计算得出次一级填充集料的最大粒径为上一级的 0.22倍。按照公称最大粒径(D)的0.22倍确定的粗细集料分界筛孔,贝雷法称之为基本控制筛孔(PCS),对基本控制筛孔以下的细集料以0.22D标准进一步划分,将其分为较粗的细集料和较细的细集料,称之为第二控制筛孔(SCS),同样对较细的细集料再进一步划分,得到第三控制筛孔(TCS)。根据3个关键筛孔的通过率,提出了3个检验参数CAFACFAF,并根据试验结果总结了最佳使用范围,然后根据参数值调节设计配合比。

3个参数的计算公式如下(P为该筛孔质量通过率):

2 国内外3参数范围研究现状

贝雷法提出3 个参数值(CAFACFAF)的初衷是为了设计沥青混合料级配,后来逐渐扩展应用于混合料的级配检验。级配检验的关键点是如何确定3个参数的范围。

关于贝雷法3参数值范围,美国 William R Varik最初提出CA值为0.4~0.8,FAC值为0.25~0.5,FAF 值为0.25~0.5;根据实践应用,提出将表面层CA值调整为 0.22~0.5;根据贝雷法参数与路用性能指标之间的试验结果,提出适用于表面层最大公称粒径为13(12.5)mm的参数范围,CA值为0.35~0.50,FAF值为0.45~0.55,FAF 值为0.30~0.40或>0.55;也有人提出不同最大公称粒径应该有不同的参数值范围。但是目前各个参数值范围都是研究人员在各自试验条件下得到的, 因此不能够作为普遍意义上的评价指标值, 而针对不同公称最大粒径采用不同范围这一思想在理论上更为合理, 但是作为评价方法又过于复杂。同时不同类型混合料(如SMA、OGFC等)的合理范围也应该不尽相同。

本文拟采用归纳演绎法, 即承认规范和参考文献所推荐的级配均为良好级配, 根据其推荐的级配范围, 分析归纳出各参数值范围, 则此范围应该是我国广泛使用级配参数值的合理范围, 再把该范围演绎到一般情况。

3 国内外典型级配的3参数值分析

AC级配是我国最广泛使用的级配类型,Superpave 级配是我国较为广泛使用的级配类型。本文所采用AC级配的级配数据来源于《公路沥青路面施工技术规范》(JTG F40-2004),从中选取规范推荐级配和交通部公路科学研究所、山东省交通科学研究所、江苏省交通科学研究院等3所单位推荐的共4个级配范围。Superpave级配为按照其控制点和限制区要求,参照林绣贤教授提出的级配范围确定。取上述级配的中值作为对象,计算不同级配的

CAFACFAF3个参数值,将结果绘制折线图见图 1。

图中FACFAF的值较为稳定,在0.43~0.59的小范围内浮动,而CA值的波动范围却很大,其中AC-25的范围为0.69~0.98;AC-20的范围为 0.43~0.58;AC-16的范围为0.73~0.8;AC-13的范围为0.2~0.34;Superpave级配整体变化区间为0.39~0.73,即AC-25级配的CA值整体偏大,而AC-13级配的CA值整体偏小,二者之差过大。

4 贝雷法公式修正

上述直接采用原始贝雷法计算的结果显示,无论AC级配还是Superpave级配,CA值波动范围较大。 寻找原因发现,前面所述3参数计算所采用的D/2、

PCSSCSTCS等控制筛孔并非按照0.22系数理论计算得到的筛孔尺寸,而是与其理论值相近似的筛孔尺寸。从表 1中可以看出,影响参数CA值的D/2和PCS的理论和实际筛孔尺寸相差很大,再对CA值计算公式的分子和分母关系进行分析, 必然会出现AC-25值偏大而AC-13值偏小的结论。而影响FACFAF的参数值SCSTCS的理论和实际筛孔尺寸几乎相同, 因此其值相对稳定。

CA值范围过大,则难以控制级配的使用性能,失去级配检验和控制的意义,如果按照公称粒径不同对CA值范围进行逐个定义,对实际评价过程增加了复杂性。为此本文进一步对3 参数的计算方法进行改进,消除理论和实际筛孔尺寸不一致的影响。通过加权平均的办法计算D/2和PCS的理论计算筛孔的通过百分率,然后用其值计算CA并与采用近似筛孔计算CA值相比较,结果见图 2。修正后,AC-25级配、AC- 20级配和AC-16级配的CA值变化较小,而AC-13和Superpave 12.5级配的CA值经过修正后提高幅度高达110%。

本文加权平均方法,指通过两个已知筛孔的通过率及筛孔尺寸,计算理论筛孔的通过率。例如,6.6mm筛孔通过率的计算公式如下:

按照贝雷法的基本原理,采用理论计算筛孔通过率应该更为合理,从图 2中也可以看出,通过加权平均修正后,CA值趋于平稳,在0.42~0.85之间波动,这与美国William R Varik所提出的0.4~0.8范围相接近。因此,采用贝雷法检验混合料级配时,FACFAF的计算采用近似筛孔即可,关于CA的计算,当公称粒径大于13.2mm时采用近似筛孔即可;当公称最大粒径小于等于13.2 mm时,即通常的AC-13级配,需对D/2筛孔的通过率采用本文的加权平均法进行修正,而PCS筛孔的通过率采用近似筛孔即可。

根据4种推荐AC级配的计算结果,剔除出现频率极小的值,初步得出我国AC级配的3参数合理范围为:CA值0.45~0.85;FAC值0.40~0.55;FAF值0.40~0.55。由于级配数据有限,本文推荐范围适用于连续型AC级配,对于间断型级配,尤其当关键筛孔为间断点时,检验结果无效。

5 结论

(1)贝雷法3个参数值(CAFACFAF)可以用来检验混合料级配, 是评价沥青混凝土芯样级配的有效手段。

(2)对于公称最大粒径小于等于13 mm的AC-13级配,计算CA值时,要对D/2筛孔的通过率采用加权平均法进行修正后,方可使用原始贝雷法公式。

(3)针对我国 AC 连续型级配混合料,初步得出3 参数合理范围CA值0.45~0.85;FAC值0.40~0.55;FAF值0.40~0.55。

(4)该范围仅初步提出,仍需要大量实际级配数据,并辅之以试验对其进行进一步验证和完善。