Fast Multilevel CVT-Based Adaptive Data Visualization Algorithm

(整期优先)网络出版时间:2010-02-12
/ 1
Efficientdatavisualizationtechniquesarecriticalformanyscientificapplications.CentroidalVoronoitessellation(CVT)basedalgorithmsofferaconvenientvehicleforperformingimageanalysis,segmentationandcompressionwhileallowingtooptimizeretainedimagequalitywithrespecttoagivenmetric.InexperimentalsciencewithdatacountsfollowingPoissondistributions,severalCVT-baseddatatessellationalgorithmshavebeenrecentlydeveloped.Althoughtheysurpasstheirpredecessorsinrobustnessandqualityofreconstructeddata,timeconsumptionremainstobeanissueduetoheavyutilizationoftheslowlyconvergingLloyditeration.Thispaperdiscussesonepossibleapproachtoacceleratingdatavisualizationalgorithms.ItreliesonamultidimensionalgeneralizationoftheoptimizationbasedmultilevelalgorithmforthenumericalcomputationoftheCVTsintroducedin[1],wherearigorousproofofitsuniformconvergencehasbeenpresentedin1-dimensionalsetting.Themultidimensionalimplementationemploysbarycentriccoordinatebasedinterpolationandmaximalindependentsetcoarseningprocedures.Itisshownthatwhencoupledwithbinaccretionalgorithmaccountingforthediscretenatureofthedata,thealgorithmoutperformsLloyd-basedschemesandpreservesuniformconvergencewithrespecttotheproblemsize.Althoughnumericaldemonstrationsprovidedarelimitedtospectroscopydataanalysis,themethodhasacontext-independentsetupandcanpotentiallydeliversignificantspeeduptootherscientificandengineeringapplications.