简介:摘要: 经济在快速的发展,社会在不断的进步,人们的生活质量在不断的提高,对于用电的需求在不断的加大, 为解决变电运维工作中所获得的大量设备数据未能得到充分利用的问题,本文在搭建变电站云平台已成为可能的条件下,主要结合数据挖掘技术对运行人员从现场获得的数据进行分析处理。这些数据包括设备压力、泄漏电流、动作次数、以及设备台账等,可以用来提高工作效率和质量、进行业务决策,避免形成数据孤岛,提高变电运维的智能化水平。一是利用了趋势外推法进行数据拟合来指导设备巡视维护工作,二是采用多元线性回归法分析设备状态的影响因素并进行缺陷预测和故障诊断,三是通过人工神经网络深度学习进行电网停电承载力分析。合理利用大数据技术将推动变电站向集约化管控、专业化运维方向转变,通过数据挖掘技术可以极大地提升变电运维工作的智能化水平,从而优化人力配置,使工作更精准高效。