简介:相干体是一种能够有效反映断层和裂缝等地质上非连续性的地震资料解释工具。然而由于受到附近地层,尤其是具有较强反射系数的地层的影响,微小断层和裂缝在相干体的时间切片和纵剖面上仍然难以辨别。本文提出了一种基于局部直方图规定化的相干体增强方法,实现相干体中的微小断层和裂缝的增强。与传统直方图规定化方法不同,本文方法处理三维相干体时不需要对数据进行离散化以统计其分布情况。在将相干体划分为若干子块后,以相干体整体的分布函数作为每个子块内的目标分布函数进行直方图规定化。另外,相邻子块的部分区域需要重叠,以克服分块产生的边界效应。对实际数据的处理结果表明,该方法可以提供更多的微小断层和裂缝的细节信息。
简介:提出一种对整幅高光谱图像的稀疏表示结果进行直接显示的方法,图中不仅包含了稀疏表示中保留的光谱信息,还可显示整幅图像的空间信息。稀疏表示后,将字典中的各有效原子根据光谱特性选择颜色标签,之后根据稀疏系数进行混合颜色显示,此时的图像能够同时满足可分性及距离保持特性。针对局部地物时,提出的单像素混合阵列表示法及改进的裂片纹理技术能够直观且完整的显示出每个像元的具体组成情况,还能够根据所生成图像中的信息对原始HSI进行重建,进而提高数据的利用率。该模型不仅能够良好地显示地物的空间特性,同时能够显示稀疏系数的组成,同时单像素混合阵列表示法及裂片纹理技术弥补了混合像素彩色显示中颜色表达混乱的弊端。对真实地物数据进行实验,结果证明该模型产生的彩色图像具有良好的视觉效果及可分性,满足距离保持特性。
简介:地震数据规则化是地震信号处理中一个重要步骤,近年来受到广泛关注的压缩感知技术已经被应用到地震数据规则化中。压缩感知技术突破了传统的Shannon-Nyqiust采样定理的限制,可以用采集的少量地震数据重构完整数据。基于压缩感知技术的地震数据规则化质量主要受三个因素影响,除了受地震信号在不同变换域的稀疏表达和11范数重构算法的影响外,极大地取决于地震道随机稀疏采样方式。尽管已有学者开展了2D地震数据离散均匀分布随机采样方式研究,但设计新的稀疏采样方案仍然很有必要。在本文中,我们提出满足Bernoulli分布规律的Bernoulli随机稀疏采样方式和它的抖动形式。对2D数值模拟数据进行四种随机稀疏采样方案和两种变换(Fourier变换和Curvelet变换)实验,对获取的不完整数据应用11范数谱投影梯度算法(SPGL1)进行重构。考虑到不同随机种子点产生不同约束矩阵R会有不同的规则化质量,对每种方案和每个稀疏采样因子进行10次规则化实验,并计算出相应信噪比(SNR)的平均值和标准偏差。实验结果表明,我们提出的新方案好于或等于已有的离散均匀分布采样方案。
简介:常规的时间一空间域和频率一空间域预测滤波方法假设地震记录由地震信号和随机噪声两部分构成,即所谓的加噪声模型,但是,在对随机噪声进行估算时,又假设随机噪声可以通过预测误差滤波器由地震记录中进行预测,即所谓的源噪声模型。这种前后不一致的噪声模型降低了该类方法的去噪能力和保幅性能。为此,本文提出了一种基于反演的时空域随机噪声衰减方法。它首先从地震数据中估算预测滤波算子,该算子表征了地震信号的可预测性,自适应地描述了地震信号的空间结构。在得到预测误差算子之后,将该算子作为正则化约束引入到地震信号反演系统,由含有随机噪声的地震数据直接反演地震信号。不同于常规随机噪声衰减方法,该方法将随机噪声衰减问题归结为正则化约束下的地震信号反演问题,克服了常规方法噪声模型的不一致性问题。我们采用模型数据和实际数据进行了实验分析,并与常规方法进行了效果对比。实验结果表明:与常规方法相比,本文方法在噪声压制的同时,没有对有效信号产生明显伤害,具有更好的振幅保持能力。
简介:边界识别是重磁数据解释中的常用方法之一,依据其结果可划分出地质体的水平范围。边界识别结果受地质体埋深及导数计算误差的影响所识别边界与真实边界之间存在一定的差距,且边界识别法无法直观地给出地质体的深度信息。为了获得异常体的水平位置和深度信息,本文提出空间归一化边界识别方法,其对不同深度的边界识别函数进行归一化计算,空间归一化边界识别法的最大值对应于异常体的水平位置和深度。常规边界识别结果的误差随理深的减小而减小,而空间归一化边界识别法是通过最大值来判断地质体的位置,最大值是在地质体处获得,因此归一化边界识别方法所获得的结果是准确的。通过理论模型试验证明归一化边界识别方法能有效地完成异常体的水平位置和深度的计算,所获得的水平位置和深度信息与理论值相一致,为下一步的勘探计划提供了更加可靠的依据。将其应用于实际航磁数据的解释,获得了断裂的具体分布形式。更多还原