简介:Thisarticlepresentsadatamanagementsolutionbasedonthedatadistributionservice(DDS)communicationmodel.ThebasicDDScommunicationmodelconsistsofaunidirectionaldataexchangewhereapplicationsthatpublishdata'push'therelevantdata,whichisupdatedtothelocalcachesofco-locatedsubscriberstothedata[1].DDShasnospecifiedcenternodetoforwarddatapacketsandmaintainthecommunicationdata.Thistypeofpublish-subscribe(P/S)modelpresentsintegrityandconsistencychallengesindatamanagement.Unlikepeer-to-peer(P2P)distributedstorage,DDSapplicationshaveahardreal-timeenvironmentandfewerdatafeatures,andthecoreproblemisensuringtheintegrityandconsistencyofdataindistributedsystemsunderthishardreal-timeenvironment.ThisarticlebeginswithabriefintroductionofthecommunicationmodelusedbyDDS,thenanalyzespersistentdatamanagementproblemscausedbysuchmodel,andprovidesanappropriatesolutiontotheseproblems.Thissolutionhasbeenimplementedinaprototypesystemofthereal-timeservicebus(RTSB)ofTsinghuaUniversity.
简介:Acompressionalgorithmisproposedinthispaperforreducingthesizeofsensordata.Byusingadictionary-basedlosslesscompressionalgorithm,sensordatacanbecompressedefficientlyandinterpretedwithoutdecompressing.Thecorrelationbetweenredundancyofsensordataandcompressionratioisexplored.Further,aparallelcompressionalgorithmbasedonMapReduce[1]isproposed.Meanwhile,datapartitionerwhichplaysanimportantroleinperformanceofMapReduceapplicationisdiscussedalongwithperformanceevaluationcriteriaproposedinthispaper.Experimentsdemonstratethatrandomsamplerissuitableforhighlyredundantsensordataandtheproposedcompressionalgorithmscancompressthosehighlyredundantsensordataefficiently.
简介:Networktrafficclassificationaimsatidentifyingtheapplicationtypesofnetworkpackets.ItisimportantforInternetserviceproviders(ISPs)tomanagebandwidthresourcesandensurethequalityofservicefordifferentnetworkapplications.However,mostclassificationtechniquesusingmachinelearningonlyfocusonhighflowaccuracyandignorebyteaccuracy.TheclassifierwouldobtainlowclassificationperformanceforelephantflowsastheimbalancebetweenelephantflowsandmiceflowsonInternet.Theelephantflows,however,consumemuchmorebandwidththanmiceflows.Whentheclassifierisdeployedfortrafficpolicing,thenetworkmanagementsystemcannotpenalizeelephantflowsandavoidnetworkcongestioneffectively.Thisarticleexploresthefactorsrelatedtolowbyteaccuracy,andsecondly,itpresentsanewtrafficclassificationmethodtoimprovebyteaccuracyattheaidofdatacleaning.Experimentsarecarriedoutonthreegroupsofreal-worldtrafficdatasets,andthemethodiscomparedwithexistingworkontheperformanceofimprovingbyteaccuracy.Experimentshowsthatbyteaccuracyincreasedbyabout22.31%onaverage.Themethodoutperformstheexistingoneinmostcases.
简介:Timelyandcost-efficientmulti-hopdatadeliveryamongvehiclesisessentialforvehicularad-hocnetworks(VANETs),andvariousroutingprotocolsareenvisionedforinfrastructure-lessvehicle-to-vehicle(V2V)communications.Generally,whenapacket(oraduplicate)isdeliveredoutoftheroutingpath,itwillbedropped.However,weobservethatthesepackets(orduplicates)mayalsobedeliveredmuchfasterthanthepacketsdeliveredalongtheoriginalroutingpath.Inthispaper,weproposeanoveltreebasedroutingscheme(TBRS)forultilizingthedroppedpacketsinVANETs.InTBRS,thepacketisdeliveredalongaroutingtreewiththedestinationasitsroot.Andwhenthepacketisdeliveredoutitsroutingtree,itwon'tbedroptimmediatelyandwillbedeliveredforawhileifitcanarriveatanotherbranchofthetree.WeconducttheextensivesimulationstoevaluatetheperformanceofTBRSbasedontheroadmapofarealcitycollectedfromGoogleEarth.ThesimulationresultsshowthatTBRScanoutperformtheexistingprotocols,especiallywhenthenetworkresourcesarelimited.
简介:AnorthogonallymultiplexedQAM(OQAM)systemallowstransmissionspeedtobeveryclosetotheNyquistratewithlittlesensitivitytodelayandsignaldistortionsoftransmissionmediumwhenalargenumberofchannelsareused.Itscircuitcomplexitycanbelargelyovercomebyintroducingdigitalsignalprocessing(DSP)technology,Inthispaper,theimplementationofgroupbanddatamodemusingOQAMtechniqueispresented,whereOQAMsystemisrealizedbymeansofcascadingadiscretecosinetransformer(DCT)andaweightingnetwork.TheproperalgorithmofevaluatingFIRfilterandDCTprovidesfurtherreductionofthecomputationcomplexitywhichdropsto35.6%ofthatofHirosaki'sscheme[5].
简介:Toimprovedatacacheperformance,optimizingprogramdatalayoutbydatareorganizationhasbecomeanimportantmethodofdecreasingtheimpactofincreasinggapofspeedbetweenprocessorandmemory.Inthisarticle,astructuresplittingframeworkwithananalysismodelnamedstructurefieldrelationgraph(SFRG)ispresentedtooptimizeprogramdatalayout.TheSFRGcanbeusedtoquantifyrelationshipbetweenfields.Ithelpstofindanoptimallayoutforstructureaswellastheoptimalprogramdatalayout.AndthedatacacheperformanceisimprovedthroughSFRG-basedstructuresplitting.Experimentsshowthatthisframeworkiseffectiveinoptimizingprogramdatalayoutandimprovingtheperformanceofdatacacheandwholeprogram.
简介:EncryptedCommunicationtechniqueisanimportantmeasuretotheinformationsafety.BasedontheadvantagesoftwopublicencryptionalgorithmRSA&DES,anovelhighintensitypublicencryptionalgorithmChaosRandomHighIntensity(CHR)isproposedinthispaper.TheprincipleofCRHisdescribedandanalyzedindetail,andtheresultsofcomputersimulationhasproveditseffectivenessandcorrectness.
简介:Themainchallengesofdatastreamsclassificationincludeinfinitelength,concept-drifting,arrivalofnovelclassesandlackoflabeledinstances.Mostexistingtechniquesaddressonlysomeofthemandignoreothers.Soanensembleclassificationmodelbasedondecision-feedback(ECM-BDF)ispresentedinthispapertoaddressallthesechallenges.Firstly,adatastreamisdividedintosequentialchunksandaclassificationmodelistrainedfromeachlabeleddatachunk.Toaddresstheinfinitelengthandconcept-driftingproblem,afixednumberofsuchmodelsconstituteanensemblemodelEandsubsequentlabeledchunksareusedtoupdateE.Todealwiththeappearanceofnovelclassesandlimitedlabeledinstancesproblem,themodelincorporatesanovelclassdetectionmechanismtodetectthearrivalofanovelclasswithouttrainingEwithlabeledinstancesofthatclass.Meanwhile,unsupervisedmodelsaretrainedfromunlabeledinstancestoprovideusefulconstraintsforE.AnextendedensemblemodelExcanbeacquiredwiththeconstraintsasfeedbackinformation,andthenunlabeledinstancescanbeclassifiedmoreaccuratelybysatisfyingthemaximumconsensusofEx.ExperimentalresultsdemonstratethattheproposedECM-BDFoutperformstraditionaltechniquesinclassifyingdatastreamswithlimitedlabeleddata.
简介:在挑战性的环境,感觉数据必须在水池失败的情况下在网络内被存储,我们需要与可得到的存储空间和剩余精力从弄空的存储来源节点再分配溢出的数据项目到传感器节点。我们设计有效数据存储算法与优先级说出分布式的数据保藏的一个分布式的精力(D2P2)。这个算法考虑两数据再分配费用和数据检索费用并且把这二个问题合为一个单个问题。D2P2能有效地由在传感器节点之中使用合作通讯认识到数据再分配。以便解决再分配竞争问题,我们介绍数据优先级的概念,它能避免在来源节点和还原剂精力消费之间的竞争咨询。最后,我们由理论和模拟验证建议算法的表演。我们表明那D2P2s性能以数据保藏时间以精力消费和表演优势接近最佳的集中的算法。
简介:Withthewideapplicationofvirtualizationtechnologyinclouddatacenters,howtoeffectivelyplacevirtualmachine(VM)isbecomingamajorissueforcloudproviders.Theexistingvirtualmachineplacement(VMP)solutionsaremainlytooptimizeserverresources.However,theypaylittleconsiderationonnetworkresourcesoptimization,andtheydonotconcerntheimpactofthenetworktopologyandthecurrentnetworktraffic.Amulti-resourceconstraintsVMPschemeisproposed.Firstly,theauthorsattempttoreducethetotalcommunicationtrafficinthedatacenternetwork,whichisabstractedasaquadraticassignmentproblem;andthenaimatoptimizingnetworkmaximumlinkutilization(MLU).Ontheconditionofslightvariationofthetotaltraffic,minimizingMLUcanbalancenetworktrafficdistributionandreducenetworkcongestionhotspots,aclassiccombinatorialoptimizationproblemaswellasNP-hardproblem.Antcolonyoptimizationand2-optlocalsearcharecombinedtosolvetheproblem.SimulationshowsthatMLUisdecreasedby20%,andthenumberofhotlinksisdecreasedby37%.
简介:在现代数据中心,网络消费的电源是全部的精力预算并且这样的看得见的部分改进数据中心网络(DCN)的精力效率真正有关系。为这精力效率的一个有效方法是由流动巩固与交通要求一起使DCN的尺寸有弹性,关掉减少电源消费的不必要的网络部件并且安排的带宽,即。同时,为数据中心管理有本能支持,软件定义联网(SDN)提供一个范例有弹性地控制DCN的资源。完成如此的电源积蓄,大多数优先的努力就采用简单贪婪对还原剂启发式计算复杂性。由于贪婪算法的固有的问题,然而,好足够的优化不能总是被保证。处理这个问题,一个修改混合基因算法(MHGA)被采用改善答案精确性,和SDN的有细密纹理的路由功能充分被利用。模拟结果证明更有效的电源管理能比以前的研究被完成,由增加大约5%网络精力积蓄。
简介:最大的挑战在之一极端宽带(UWB)无线电是为接收装置的精确预定获得。在这篇文章,我们为脉搏振幅调整(PAM)开发一个新奇帮助数据的同步算法UWB系统。飞行员和信息符号被直角的代码部门multiplexing(民防国防动员署)同时播送计划。在接收装置,一个算法基于协调察觉者的最小的平均误差概率(MAEP)被使用估计预定偏移量。多,为预定偏移量评价的路径干扰(MI)问题被考虑。mean-square-error(MSE)和bit-error-rate(BER)我们的建议计划的表演被模仿。结果证明我们的算法基于最大的相关因子产量(MCO)超过算法在多路径隧道。
简介:Theonlinesocialnetworks(OSNs)offerattractivemeansforsocialinteractionsanddatasharing,aswellasraiseanumberofsecurityandprivacyissues.Althoughcurrentsolutionsproposetoencryptdatabeforesharing,theaccesscontrolofencrypteddatahasbecomeachallengingtask.Moreover,multipleownersmayenforcedifferentaccesspolicytothesamedatabecauseoftheirdifferentprivacyconcerns.Adigitalrightsmanagement(DRM)schemeisproposedforencrypteddatainOSNs.Inordertoprotectusers'sensitivedata,theschemeallowsusersoutsourceencrypteddatatotheOSNsserviceproviderforsharingandcustomizetheaccesspolicyoftheirdatabasedonciphertext-policyattribute-basedencryption.Furthermore,theschemepresentsamultipartyaccesscontrolmodelbasedonidentity-basedbroadcastencryptionandciphertext-policyattribute-basedproxyre-encryption,whichenablesmultipleowners,suchastaggeduserswhoappearinasingledata,customizetheaccesspolicycollaboratively,andalsoallowsthedisseminatorsupdatetheaccesspolicyiftheirattributessatisfytheexistingaccesspolicy.Securityanalysisandcomparisonindicatethattheproposedschemeissecureandefficient.
简介:Recently,alotofdigitalsubscriberloopsystems(DSL)andhighratedigitalsubscriberloopsystems(HDSL)havebeendeployedindigitalsubscriberaccessnetworks.DataechocancellerisextensivelyusedintheDSLandHDSLsystemstorealizefullduplextransmissionontwistedcable.Insuchsystems,2B1Qlinecodeisadopted.Therefore,symbolrateisdecreasedanddigitaltransmissionsystemsgetlongerreach.Inthispaper,aperformanceevaluationmethodoftheechocancellerisproposedbasedonanautocorrelationmatrixof2B1Qlinecode.Usingthismethod,theformulaofratioofdatasignaltoechoresidualsignalisobtained.Accordingtotheformula,theratioofdatasignaltoechonoisedependsonFIRfiltertap,convergencefactor,adaptivealgorithmandthecorrelationmatrixofthelinecode.Computersimulationiscarriedouttoverifytheoreticalanalysis.Thesimulationresultscoincidedwiththetheoreticalformulaintheprocessestimatingtheratioofsignaltonoise.
简介:以某地市电信企业的客户为目标用户群,结合电信行业的业务规则,利用SPSS公司的数据挖掘工具Clementine,运用数据挖掘中的CRISP—DM模型方法建立了客户流失预测模型,为电信企业对流失客户采取更有效的营销策略提供一些建议。