简介:天波超视距(0TH)雷达系统中,为了获得较高的多普勒分辨率,通常会采用长的相干积累时间,但对于机动目标,长相干积累时间会导致回波的多普勒展宽,不利于检测。对于弱目标,由于其能量低,容易被强目标掩盖,加大了检测难度,针对这一问题,提出一种基于目标运动参数估计的0THR机动弱目标检测方法。利用遗传算法优越的参数估计性能这一特点,采用遗传算法估计各目标的运动参数,并引入“clean”算法的思想,在时域上逐个减去强目标,以消除强目标的掩盖效应。又考虑到遗传算法的运算量较大,进一步提出采用时频分析算法估计各参数范围,减小遗传算法的运算量。仿真结果表明,与已有算法相比,文中算法具有更高的参数估计精度和弱目标检测性能。
简介:在天波超视距雷达(OTHR)中,机动目标的多普勒谱展宽,会导致相干积累损失,影响目标检测。传统的时频分析方法将目标回波信号投射到时频域中再通过能量积累实现机动目标检测和参数估计,但该方法在瞬态干扰存在的情况下效果较差且计算量过大。考虑到机动目标和瞬态干扰在时间-频率变化率域中的不同特性,提出了一种基于时间-频率变化率分布(TFRD)的机动目标检测算法,该算法通过TFRD构建时间-频率变化率(T-FR)域,并在T-FR域中进行目标参数估计,可以降低瞬态干扰对机动目标检测的影响。经实测数据仿真验证,该算法可以在瞬态干扰存在的情况下有效地检测出机动目标,而传统的WHT(Wigner-Hough-Transform)算法则由于瞬态干扰影响导致检测错误。此外,该文算法避免了使用Hough变换,减小了运算量,使其可以更好地应用于工程中。