简介:摘要本文对多目标粒子群算法的原理和数学模型做了基础记述,然后对多目标粒子群算法做了仿真测试,并使用加速因子对其线性变化进行了优化,这不仅保证了粒子群算法初步搜索时能在比较大的范围内迅速找到自身最优位置(pbest),而且利用加速因子的权重变比变化促使后期粒子群进行严格的局部搜索以便于去找到gbest位置也就是全局最优位置,使其集中向Pareto最优前沿聚集。使得在仿真结果中使用拥挤距离删除后得到的图形的最优前沿更加均匀平滑。最后利用前面所介绍的粒子群算法去解决环境经济调度优化问题,介绍环境经济调度原理以及其数学模型,在其多个不等式和等式约束下做了仿真测试,得到的数据与文献做了详细对比,表明粒子群算法在解决环境经济调度的问题中具有很大的可行性和有效性。
简介:摘要光伏阵列被云层局部遮挡,使得其功率-电压(P-V)曲线呈现阶梯状、多极值的形状,从而造成传统的最大功率点跟踪不起作用,陷入局部寻优,本文提出了一种可以快速、稳定并且能够全局寻优的最大功率点跟踪(MPPT)算法。算法先将粒子群优化(PSO)改进,使得在一定的迭代次数下稳定地全局更新所有粒子的速度和位置,快速找到最大功率点(MPP)的大概位置,再利用改进的Fibonacci数列作为变步长扰动观察法步长改变的依据,快速接近和得到功率的最佳解1。通过Simulink建立了仿真模型,与变步长扰动观察法、传统粒子群优化算法进行比较,验证了算法在精度与速度上有明显提升。
简介:摘要优化变电检修计划,可以获得更加经济和理想的检修计划方案。基于这种认识,本文提出了一种基于粒子随机变异思想的改进型离散粒子群算法,能够对变电检修计划模型进行优化。从计划的优化效果来看,采用该算法可以降低变电检修成本,并使检修工作效率得到提高,因此可以为变电检修带来更多的效益。
简介:摘要在智能电网不断发展的大背景下,配电网络重构可以不投入额外的设备,仅通过改变线路上的开关状态,就能实现降低网损,改善电压质量的目的,其重要性日益突出。本文提出了一种基于改进量子粒子群算法的配电网络重构方法。该方法通过基于环路的十进制编码方式对粒子向量进行编码,降低了重构过程中不可行解产生的比例;引入了Logistic映射来提高初始种群的遍历能力;采用自适应调整的收缩—扩展系数α,提高量子粒子群算法的动态自适应性。最后,本文运用MATLAB仿真计算,验证了该方法的正确性、有效性和快速性。
简介:摘要针对标准粒子群算法易收敛到局部最优的缺点,本文对粒子群算法做出了部分改进,同时引入了Pareto多目标的配电网模型,这种模型相对于单目标和加权多目标模型相比更具实际工程意义。
简介:摘要大规模电动汽车用户的无序充电行为会对电网造成“峰上加峰”等影响,因此电动汽车规模化应用迫切要求实现对充电行为的引导和调度。电动汽车的储能特性,使其可以通过充电站/桩较好地与电网侧进行能量交互,实现V2G调度。根据V2G的特点以充电站各时刻的电动汽车充放电功率为控制对象,建立了以日负荷曲线峰谷差为目标函数的多维、非线性数学模型,并采用粒子群算法求解,得到电动汽车日前优化调度计划。针对电力系统调度问题的应用,本文进一步建立以峰谷差为目标的外层控制模型,并以上述V2G模型作内层优化。应用某典型小区日负荷曲线进行算例仿真,验证了算法的有效性,比较了不同电动汽车数对负荷曲线的影响。结果表明,电动汽车充电调度策略模型,能够有效地降低电网峰谷差,达到平稳负荷波动的效果;且以峰谷差为目标的双层控制模型,能够较好的跟踪不同目标下所需要的可控车辆数,验证了模型有效性。
简介:摘要风力发电机组、抽水蓄能电站以及传统燃煤火力发电机组的协同优化,考虑联合运行系统的经济性,因而是个单目标优化问题,但有着很多的约束条件和极高的变量维度,采用传统的优化方法无法在短时间内得到最优解,因而,对于本文高维度、多变量的解空间问题,需要寻找一种合适的算法来解决问题。粒子群优化算法从解空间的随机解出发,通过粒子的运动迭代最终达到最优解。因此,本文采用了粒子群优化算法作为基础,对联合运行系统的优化进行求解。
简介:摘要:随着我国经济在快速发展,社会在不断进步,电力系统无功优化可以改善电网的无功分布,有效地降低网络有功损耗,保证经济效益。针对粒子群算法在电力系统无功优化问题中存在物种多样性下降和易于陷入局部最优的问题,提出含扰动的改进吸引排斥粒子群算法。该算法通过对物种多样性和迭代次数进行判断,优化速度更新公式和位置更新公式,较好地克服传统粒子群算法在电力系统无功优化问题中存在的不足,通过对IEEE-14节点系统进行仿真验证,验证提出的算法可以更好地降低有功损耗,证明该方法的有效性。
简介:摘要本文提出了一种基于粒子群优化(PSO)和单周控制相结合的光伏系统部分遮荫条件下最大功率点跟踪(MPPT)算法。在均匀辐照条件下,扰动观测(P&O)和增量电导(IC)等算法在最大功率点跟踪中非常有效。但在部分阴影条件下,它们无法跟踪全局MPP,并收敛到局部MPP。本文最大功率跟踪算法克服了这一技术难题,能够有效地确定全局MPP。在不同的遮阳条件下,对光伏结构进行了大量的仿真研究。实验结果表明了该方法的有效性。