简介:为实现重载铁路轨道典型缺陷的准确、快速、智能检测,基于深度学习算法,提出一种针对重载铁路钢轨图像的特征加强卷积神经网络模型,研制一套基于机器视觉的便携式轨道图像采集系统;整理创建重载铁路钢轨表面多目标图像数据集,并基于此数据集进行训练,实现裂纹、擦伤、块状损伤、接缝4种典型缺陷目标的智能识别;针对数据集中目标尺度分布不平衡的特点,使用聚类算法重新设置锚框的尺寸和数量;对比分析重载铁路钢轨缺陷图像的纹理复杂性与固有特点,引入加权融合池化模块和纹理特征增强模块对自适应训练样本选择(ATSS)算法进行改进.应用所提算法对重载铁路轨道进行检测,4类典型缺陷目标的全类平均正确率达到85.8%.通过与其他9种检测算法的对比,充分验证了所提算法的有效性.