简介:为提高无人车行驶过程中前方车辆检测的准确性和实时性,提出了基于激光雷达(LIghtDetectionAndRanging,LIDAR)深度信息和视觉方向梯度直方图(HistogramsofOrientedGradients,HOG)特征的车辆识别和跟踪方法。目标首次进入视野时,聚类处理激光雷达深度信息并确定假设目标的候选区域,采用车辆尾部的HOG特征对假设目标进行验证。在HOG特征验证前,基于最小二乘支持向量机(LeastSquaresSupportVectorMachine,LS-SVM)算法对样本集HOG特征进行训练学习,生成车辆分类器模型。对于验证后的目标车辆,采用激光雷达获取的深度信息对目标车辆进行持续跟踪。构建了2种车辆模型,结合最小二乘直线拟合方法提取出车辆特征,生成目标模型。同时,提出了基于多特征马氏距离的目标关联代价方程,实现了多目标的关联;完成了基于卡尔曼滤波的车辆状态滤波和位置估计,更新了跟踪器模型。通过有效的管理策略,实现了目标跟踪的3个状态:1)初始化模型的生成;2)跟踪过程中跟踪器的更新与预测;3)目标驶离视野时跟踪器的删除。最后,通过试验验证了跟踪算法的有效性。
简介:针对新型作战体系下以装甲车辆为主的地面目标的被动声识别问题,为实现不同车型在不同工况下的声识别,以常见的3种坦克和4种履带式装甲车为识别对象,提出了一种基于变分模态分解(VariationalModeDecomposition,VMD)和人工蜂群(ArtificialBeeColony,ABC)算法优化的支持向量机(SupportVectorMachine,SVM)相结合的装甲车辆声识别模型。首先,采集不同工况下的车辆噪声信号并进行频谱分析,证明了VMD分解的可行性;其次,对样本信号进行VMD分解,得到不同尺度的本征模态函数(IntrinsicModeFunction,IMF)并进行多尺度模糊熵(Multi-scaleFuzzyEntropy,MFE)的计算,得到多尺度模糊熵特征(VMD-MFE);然后,利用优化算法对SVM进行优化,得到最优参数优化的分类器模型;最后,对噪声信号进行特征提取和分类实验。结果表明:VMD的分解效果优于经验模态分解(EmpiricalMadeDecomposition,EMD)和集合经验模态分解(EnsembleEmpiricalModeDecomposition,EEMD);与引力搜索算法(GravitationalSearchAlgorithm,GSA)和布谷鸟搜索(CuckooSearch,CS)算法相比,ABC算法得到的优化模型ABC-SVM具有更高的识别率,可达94.14%以上。