简介:〕在中考中运用一元一次不等式解决数学问题是每年的必考题,而且这类习题在日常生活中的应用越来越广泛,因此,对中学生生来说学好一元一次不等式知识具有非常重要的作用。本文利用解决实际问题来谈一下一元一次不等式的应用及解题方法。
简介:〔摘要〕本文主要叙述了高三第一次适应性检测历史答卷存在的问题以及复习策略,以供同行商讨。
简介:〔摘要〕三角函数的单调性是三角函数的重要性质之一,是数学解题的有力工具,也是研究三角函数时经常要优先注意的一个性质。学习三角函数不彻底掌握三角函数的单调性不能叫学好三角函数的性质.而学好这一性质应当从其疑点及难点入手。某些数学问题从表面上看似乎与三角函数的单调性无关,但如果我们抓住其本质,站在三角函数的角度审视,创造性地运用三角函数的单调性来处理,常可化难为易,避繁就简。
简介:〔摘要〕运用函数知识求解实际问题是中考命题的热点,而将二次函数知识与我们的学习生活或市场经济或工农业生产等实际问题相结合在各地中考卷中更是倍受青睐。现举几例给予解析,以增强同学们对二次函数知识的应用意识。
简介:〔摘要〕对形如y=ax2+bx+cx或y=ax(b-cx)型的函数求最值问题均可考虑利用基本不等式方法去解决。〔关键词〕基本不等式最值问题如果a,b均为非负数,那么a+b2≥姨ab。当且仅当a=b时不等式取等号。此不等式叫基本不等式(也叫均值不等式)。它的变形式为①a+b≥2姨ab(积一定,和有最小值)。②姨ab≤a+b2即ab≤a+b蓸2蔀2(和一定,积有最大值)利用它的变形式可以求一定形式的函数的最大(小)值问题。下边介绍几种求函数最值的方法1添项,拆项,配凑法例1设x>1,求函数y=x+2x-1的最小值。解∵x>1∴x-1>0∴y=x+2x-1=(x-1)+2x-1+1≥2(x-1)?2姨x-1+1=2姨2+1当且仅当x-1=2x-1即x=姨2+1时,ymin=2姨2+1注本题是添项法。例2设x∈R,求函数y=x2+5姨x2+2的值域。解∵x∈R∴x2≥0∴y=x2+5姨x2+2=(x2+2)+3姨x2+2=姨x2+2+3姨x2+2≥2x2+2?3姨姨x2+2=2姨3当且仅当姨x2+2=3姨x2+2即x=±1时,ymin=2姨3∴y∈2姨3,+∞)注本题为配凑法例3设x>-1,求函数y=x2+7x+10x+1的最小值。解∵x>-1∴x+1>0∴y=x2+7x+10x+1=[(x+1)-1]2+7[(x+1)-1]+10x+1=(x+1)2+5(x+1)+4x+1=(x+1)+4x+1+5≥2(x+1)?4姨x+1+5=9当且仅当x+1=4x+1即x=1时,ymin=9注本题利用配凑法