简介:随着“大数据时代”的到来,一股席卷全球的智能化在线教育浪潮正在蔓延,高校传统的教学模式趋向颠覆,高校教师的职业发展也将受到重大挑战。众多大学生在在线学习时将会产生海量的数据,高校教师如何挖掘、分析这些数据,对改进自身教学实践、促进自身专业发展都具有丰富的价值。学习分析在大数据时代的高等教育中被广泛应用已成必然趋势,并具有非常广阔的应用前景,高校教师应该具备较强的数据分析能力。学习分析从以下四个方面促进大数据时代高校教师在线专业发展:可以提升作为在线学习者的高校教师的学习效率,激发其自主的专业发展意识;可以提高高校教师作为在线教学者的教学效率,发展其在线教学实践智慧;可以提高高校教师作为研究者的研究绩效,提升其对学生在线学习的服务能力;可以提高高校教师作为管理者的管理效率,提升其在线教学领导力。
简介:根据大数据技术的模块构成和电子书包所包含的系统和功能,对电子书包中教育大数据的模块内容进行分析。之后,在评价内容上从课程内容学习、参与互动交流、考试与作品和课外资源学习四个方面进行了细分和聚类.构建了基于电子书包的个性化学习评价模型。在评价结果上,依据柯氏四级评估模式和布鲁姆教学目标分类理论设计了基于教育大数据的个性化评价层次塔,该层次塔包括学习成效、概念转变、学习迁移和学习力四个层级。最后,结合教育大数据、教育云服务、个性化评价模型和评价层次塔,设计了个性化学习评价系统模型,包括信息采集模块、数据分析与处理模块、个性化评价模块和可视化反馈模块,并通过云管理层实现对教育云服务平台、云存储池和云集群计算平台的调控和管理,以期为后面开展个性化评价系统的设计与开发提供有益的指导。
简介:大数据领域近年来蓬勃发展,作为大数据的细分领域,教育大数据具有推动教育变革的巨大潜力。大数据技术正在快速演进之中,这为大数据应用提供了新的可能。为了深入分析教育大数据发展,从大数据技术的最新进展入手,从基础设施、分析技术和领域应用方面阐述了大数据的发展趋势。进而通过教育领域大数据构成与特征的分析,对教育大数据的含义进行了解析。并结合国际范围内教育大数据典型实践,从适应性教学、教育规律发现和精准管理支持的角度,对教育大数据应用进行了探讨。最后,针对我国教育大数据的发展状况,对教育大数据发展所面临的挑战进行了分析,并提出了应对挑战的建议。