简介:利用锥上的不动点定理证明了二阶Nuemann特征值问题-u″+Mu=λa(t)f(u(t))m0≤t≤1u′(0)=u′(1)=0是的正解存在性结果.
简介:利用上下解方法及Schauder不动点定理,证明了二阶非线性微分方程组三点边值问题:{y"=f(t,y,z,y',z')z"=g(t,y,z,y',z')y(-1)=A,y(1)=B,z(0)=C0,z'(0)=C1,解的存在性,并由此得到四阶非线性微分方程三点边值问题解的存在性,一定程度上推广了前人的一些结果.作为文章结果的应用,讨论了奇摄动四阶半线性三点边值问题,得到该问题解的存在性及解的渐近估计.
简介:根据Cauchy—Schwarz不等式,得到了C^2(a,b])空间中函数的二阶导数的若干新积分不等式.