学科分类
/ 25
500 个结果
  • 简介:利用积分平均技巧,得到了半线性阻尼微分方程[a(t)|x′(t)|α-1x′(t)]′+p(t)k(t,x(t),x′(t))x′(t)+q(t)|x(t)|α-1x(t)=0的一些新的振动定理.这些结果改进和推广了ManojlovicJV[5]的结果.

  • 标签: 振动 半线性微分方程 阻尼 积分平均法
  • 简介:设R是有1的交换环,2是R的单位,本文决定了R上李代数sl2(4)的理想,进而,若R是整环,本文决定了sl2(R)与gl2(R)的自同构形式。

  • 标签: 整环 李代数 自同构 交换环
  • 简介:利用Avery-Henderson不动点定理,讨论了时间测度链上一类非线性边值问题正解的存在性,并在一定条件下得到两个正解的存在性结果,继而利用Legget-Williams不动点定理将其两个正解推广到三个解的情况,同时利用一种等价转化,给出线性边值问题格林函数的求法,使其求法一般化.

  • 标签: 时间测度链 边值问题 正解 不动点
  • 简介:本文讨论了一类线性时变系统在临界情况下的稳定性,给出了保证该系统零解稳定的充分条件,这一结果将拓宽控制论中线性时变控制系统的研究范围。

  • 标签: 线性的 时变系统 临界情况稳定
  • 简介:利用变量代换把变系数线性微分方程降为一线性微分方程,讨论了变系数线性微分方程可积4个充分条件及通解公式.

  • 标签: 微分方程 变系数 通解
  • 简介:通过使用Hammastein积分方程和锥上的不动点定理对于一类含时间奇异性的线性Dirich.1et问题建立了三个局部存在定理.主要结论表明只要非线性项的主要部分在某些有界集合上的高度是适当的此问题具有n个正解,其中竹是一个任意的自然数.

  • 标签: 非线性常微分方程 边值问题 正解 存在性 多解性
  • 简介:研究的是线性微分方程组的边值问题,在适合的条件下,应用抽象不动点理论以及线性算子的第一特征值的条件,得出了方程组的多个正解的存在性.

  • 标签: 二阶微分方程 微分方程组 组边值问题
  • 简介:利用锥上的不动点定理证明了Nuemann特征值问题-u″+Mu=λa(t)f(u(t))m0≤t≤1u′(0)=u′(1)=0是的正解存在性结果.

  • 标签: Nuemann边值问题 特征值 正解
  • 简介:在Banach空间中利用上下解方法与不连续增算子不动点定理,研究了含间断项和右端函数具有一导数项的线性常微分方程周期边值问题的最大解、最小解的存在性,推广和改进了现有的结果.而且对于有限维空间,我们获得的这些结果也都是新的.

  • 标签: BANACH空间 周期边值问题 上下解 增算子不动点定理
  • 简介:利用上下解方法及Schauder不动点定理,证明了线性微分方程组三点边值问题:{y"=f(t,y,z,y',z')z"=g(t,y,z,y',z')y(-1)=A,y(1)=B,z(0)=C0,z'(0)=C1,解的存在性,并由此得到四线性微分方程三点边值问题解的存在性,一定程度上推广了前人的一些结果.作为文章结果的应用,讨论了奇摄动四线性三点边值问题,得到该问题解的存在性及解的渐近估计.

  • 标签: 上下解 SCHAUDER不动点定理 二阶方程组 三点边值问题
  • 简介:运用多值分析、单调算子理论和Schuder不动点定理讨论了一类具有多点边值条件的微分包含问题.作为一个预备性的结果,给出了一类发展方程的解的存在唯一性和对初值的连续依赖性.最后,给出了以上结论在最优化和偏微分方程方面的两个应用.

  • 标签: HILBERT空间 二阶微分方程 算子 极大单调 紧集 等度连续
  • 简介:利用锥拉伸和压缩不动点定理,得到了线性三点边值问题u″(t)+a(t)u’(t)+b(t)u(t)+h(t)f(t,u,(t))=0,t∈(0,1)u(O)=βu(δη),u(1)=au(η)的正解存在性的充分条件,其中α,β∈[0,+∞),0〈η〈1

  • 标签: 三点边值问题 正解 不动点定理