简介:由条带和流向涡的循环再生构成的近壁自维持过程(self-sustainingprocess,SSP)是壁湍流产生和维持的重要机制.文章通过对最小槽道的直接数值模拟(directnumericalsimulation,DNS)获得近壁自维持过程的流场数据,采用正规正交分解法(properorthogonaldecomposition,POD)对该数据进行分析,获得了不同流向和展向尺度的特征模态,通过将Navier—Stokes方程在这些模态上进行投影,得到近壁自维持过程的降阶模型,并采用DNS数据对降阶模型的预测能力进行了评价.该模型被初步应用于大涡模拟近壁模型的构造.
简介:为了填补船测海深数据空白,给出了海底地形起伏与重力异常和重力异常垂直梯度之间的导纳函数关系。据此,以测高重力异常、重力异常垂直梯度作为输入数据,采用线性回归分析技术,在西南太平洋相关海域开展了海底地形反演试验。结果表明,通过不同方法获取的比例因子与海底地形呈现一定的内在联系,地形平坦海域,比例因子较小;海山分布较多的地形起伏较大的海域,比例因子相对较大,反映了重力数据与海底地形较强的相关性。同时,采用线性回归方法构建的海底地形模型检核精度最高,相较于传统方法获取的海底地形模型,精度最高提升了46%左右,与ETOPO1海深模型和DTU10海深模型相比较,模型精度最大提高了近一倍有余。另外,不同方法对于不同的海底地形具有各自不同的优势,靠近海山区域,采用线性回归技术反演的海深结果优于传统方法;在海山部分,传统方法反演精度又好于线性回归技术。不同数据源反演海底地形的统计结果表明,以重力异常垂直梯度构建的海底地形模型的检核精度优于以重力异常作为输入数据构建的海底地形模型。
简介:在非线性、非高斯条件下进行动基座传递对准,如果采用卡尔曼滤波会出现误差较大甚至发散的问题。本文引入强跟踪自适应滤波器,建立对估计误差的一步预测方差PK/K-1的加权算法,来达到抑制噪声的目的;同时,针对初始对准对准精度与快速性的要求,建立了动基座传递对准精确的非线性滤波模型。通过计算机仿真,模拟了飞机机动模式,验证所提滤波器的可行性。最后,通过与扩展卡尔曼滤波的比较,说明非线性强跟踪自适应滤波器在对准精度与速度上都有更好的表现。
简介:针对带有末端多约束的三维非线性制导问题,设计了一种通用模型预测静态规划制导算法。该制导算法通过向后迭代求解权矩阵微分方程对控制量进行更新,将动态优化问题转化为静态优化问题,计算效率得以提高。阐述了通用模型预测静态规划制导算法的基本原理,详细给出了基于通用模型预测静态规划算法的制导律设计过程。所设计的制导律满足末端法向加速度约束,因此,间接满足末端弹体姿态角约束。仿真时考虑目标的机动方式和落角约束,仿真结果表明,末端位移偏差小于0.5m,末端落角可控制在0.01°范围内,末端法向加速度小于0.01m/s^2,该制导律能够很好地满足末端位移、落角和法向加速度约束。
简介:TNNS(真航向导航系统)由MS860接收机、INS及处理数据的PC/104架构的嵌入式工控机构成.针对TNNS推导了INS(惯性导航系统)的误差模型,提出了适合于TNNS的降阶扩展卡尔曼滤波算法组合GPS和INS。系统在东海作了三次海试,软件及滤波算法平台由C/C++编制.海上试验表明,组合滤波后,INS的位置误差由i00m降低到40m以下;进行最优化滤波后的航向误差α由原来的0.105°减小为0.034°,纵横摇的误差也大幅减小.整个海试结果表明,在TNNS中组合GPS/INS采用的降阶扩展卡尔曼滤波算法,大幅提高了系统精度和可靠性.
简介:在详细分析光纤陀螺零漂的基础上,提出了先用滤波算法对光纤陀螺信号进行预处理,然后采用RBF神经网络对滤波后的信号进行建模的方法.针对光纤陀螺信号特点分别采用FLP算法、小波滤波算法、解相关变步长LMS自适应滤波算法对其进行了预处理,比较三种滤波方法,小波滤波算法效果优于其它两种预处理方法,但针对基于预处理后的陀螺信号采用RBF神经网络进行建模时,小波滤波预处理后的信号在建模精度上却是最差的,而对FLP算法滤波后的信号进行RBF建模,建模精度提高了两个数量级。结果表明:基于FLP算法的RBF神经网络在光纤陀螺中的建模是有效的,可大大提高建模的精度。
简介:文章考察了相邻双侧边盖驱动方腔流动(即上壁面向右运动和左侧壁面向下运动)的三维线性整体稳定性.首先,采用Taylor—Hood有限元方法并经由Newton迭代过程计算得到双侧边盖驱动方腔流动的二维稳态基本流.其次,Taylor—Hood有限元在ChebyshevGauss配置点上进行离散,同时Gauss配置点也可以用于线性稳定性方程的高阶有限差分格式离散.然后,离散得到的矩阵形式的广义特征值问题可以结合shift-and—invert算法采用隐式重启Amoldi方法计算.最后,通过对线性稳定性方程特征值的计算,发现了一个最不稳定的驻定模态和两对对称行波模态.最不稳定的三维驻定模态的临界Reynolds数为Ree=261.5,远远小于二维不稳定的临界Revnolds数Ree2d=1061.7.通过画出这3类三维不稳定模态的流向扰动速度和扰动涡量的空间等值面图像,可以发现不稳定扰动位于稳态基本流的两个主涡区域,因此可以认为主涡区域是三维扰动失稳的主要能量来源地.
简介:通过分析1维和2维线性插值可以推导出任意斜角直线坐标系下n维线性插值的一般计算公式以及有唯一解的条件,这一结论能够应用于三维温度场计算。可以将n维插值问题归结如下:已知n+1维空间中的n+1个点的坐标以及第n+2个点的n个坐标分量xn+2,1,xn+2,2,,xn+2,n,求解该点的第n+1个坐标分量xn+2,n+1。根据线性插值定义,第n+2个点位于前n+1个点所确定的n维超平面上。根据这一条件列写方程、求解方程可得到插值xn+2,n+1。n维插值问题有唯一解的条件是已知的n+1个点在n维空间中构成的多面体的体积不为0。推导过程在斜角直线坐标系中完成,因而结论具有较大普适性。
简介:基于状态空间模型的许多传统滤波算法都基于Rn空间中的高斯分布模型,但当状态向量中包含角变量或方向变量时,难以达到理想的效果。针对J.T.Horwood等提出的nS?R流形上的GaussVonMises(GVM)多变量概率密度分布,扩展了狄拉克混合逼近方法,给出了联合分布的GVM逼近方法,推导了后验分布的GVM参数计算公式,设计了量测更新状态估计算法。将J.T.Horwood等的时间更新算法与所提出的量测更新算法相结合,可实现基于GVM分布的递推贝叶斯滤波器(GVMF)。仿真结果表明,当状态向量符合GVM概率分布模型时,GVMF对角变量的估计明显优于传统的扩展卡尔曼滤波器。
简介:针对随机时滞和异步相关噪声情况下的状态估计问题,提出了一种改进的高斯滤波算法(GF),并给出了其适用于高维系统的实现形式—随机时滞和异步相关容积卡尔曼滤波器(CKF-RDCN)。首先,通过满足Bernoulli分布的互不相关随机序列,来描述系统观测数据中可能存在的随机时滞现象,将量测噪声作为状态变量用以实现对观测时滞后验概率密度的估计。其次,利用一阶斯特林插值公式来近似估计,由于过程噪声和量测噪声异步相关,而导致的含有随机变量的多维积分问题。最后,依据三阶球径容积法则,给出了CKF-RDCN滤波算法的详细设计。此外,经典GF算法是所提出的改进GF算法的特例,其作为一个通用的非线性滤波算法框架,根据不同的后验概率密度估计方法,可以有不同的实现形式。仿真结果表明,相比于扩展卡尔曼滤波算法(EKF)以及容积卡尔曼滤波算法(CKF),CKF-RDCN在解决含有观测时滞和相关噪声系统的状态估计问题时,具有更高的精度和更好的数值稳定性。
简介:为了更好地理解不同空间坐标系下流体界面对Rayleigh—Taylor(RT)不稳定性弱非线性阶段谐波的影响,文章采用3阶小扰动展开法,解析研究了球坐标空间经典RT不稳定性弱非线性阶段谐波的演化规律,并和柱坐标空间以及直角坐标空间相应结果进行了对比研究.当球坐标系和直角坐标系中RT不稳定性界面扰动波长相同,球坐标系中初始扰动半径为无穷大时(即球坐标下RT不稳定性初始扰动半径相对于扰动波长为无穷大时),球坐标下RT不稳定性前4次谐波的结果和直角坐标系下的相应结果相同.研究表明:由初始界面曲率引起的Bell-Plesset(BP)效应和空间效应(直角坐标空间、柱坐标空间和球坐标空间)对谐波发展有较大的影响.即在不同正交曲线坐标系下,不同曲率的流体界面效应对RT不稳定性谐波发展有较大的影响.对于柱坐标空间和球坐标空间,2阶对0次谐波的反馈加强了界面向内收缩.研究还表明:界面效应增加了2次谐波的负反馈,然而,对于基模和3次谐波却有不同的影响.
简介:在Mach数3.4的来流条件下,对二维后台阶流动精细结构开展了实验研究.实验分为后台阶上游无控制加粗糙带扰动及微涡流发生器(micro-vortexgenerator,MVG)扰动3种状态,采用基于纳米示踪的平面激光散射(nano-tracerbasedplanarlaserscattering,NPLS)方法获得了流向和展向切面内的高时空分辨率流动显示图像,并测量了模型表面静压分布.对大量NPLS图像取平均,研究了流场结构的时间平均规律,对比不同时刻的瞬态流场精细结构图像,发现不同状态下的湍流大尺度结构的特征时间.有粗糙带状态相对无粗糙带台阶下游回流区压力更低,而下游压力较高,台阶上游区别不大;受MVG控制后台阶下游附近区域压力突增;MVG对流动的控制改变能力较强,粗糙带能调整台阶上下游附近流动平稳过渡,流场壁面压力没有突变.