简介:研究了平均非扩张型映射T:‖Tx-Ty‖≤a‖x-y‖+b‖x-Tx‖+c‖x-Ty‖,(x,y∈K,a,b,c≥0,a+b+c≤1)的公共不动点的存在性和唯一性.得到平均非扩张型映射T1和T2满足T1T2=T2T1,则T1T2存在唯一的不动点,并且T1和T2存在唯一的公共不动点.本文结果是近期相关文献结果的推广.
简介:一、启发提问图7-771.如图7-77,⊙O1、⊙O2沿直线O1O2作相向运动,请观察:(1)两圆有无公共点?若有公共点?有几个?(2)在哪几个位置时⊙O1与⊙O2有一个公共点?(3)在什么位置时⊙O1与⊙O2有两个公共点?2.设⊙O1的半径为r,⊙O2的半径为R,O1O2=d,试用d、R、r之间的数量关系表示两圆的五种位置关系.3.若两圆相切,则连心线必过.4.连心线是一条直线,相交两圆的连心线公共弧.二、能力训练1.填空图7-78(1)设⊙O1、⊙O2的半径分别为r、R(R≥r).O1O2=d,那么:①如图7-78,⊙O1与⊙O2相离,则dR+r.②如图7-79,⊙O1与⊙O2外切,则.③
简介:生态环境系统是一个复杂的有待于综合运用生物科学、环境科学、信息科学、数学科学与计算机科学深入研究的信息系统.而其中对生态系统宏观优化调控决策的研究已成为了近年来国内、外数学与生态学工作者深入探讨的一大课题.基于当前生态种群研究须向宏观与微观两极纵深发展、延伸以及数量种群生态学复杂系统建模的需要,本文通过对一类具有竞争机理局部稳定的两种相互作用生态种群模型保解析性及其宏观优化调控的讨论,进一步将生态环境系统的调控严谨化,给一类生态系统的动态分析与调控优化提供了很有价值的方法与手段.这不仅对于两种相互竞争和互惠互存的生态系统的建模与分析具有重要意义,而且对于更为复杂的生态环境系统的动态分析与宏观调控也具有较大的指导作用与应用价值.
简介:设H是一实Hillber空间,K是H之一非空间凸子集,设(Ti)i=1^N是N个Lipschitz伪压缩映象使得F=∩i=1^NF(Ti)≠Ф,其中F(Ti)={x∈K:Tix=x}并且{αn}n=1∞,{βn}n=1^∞包含[O,1]是满足如下条件的实序列(i)∑n=1^∞(1-αn)^2=+∞;(ii)limn→∞(1-αn)=0;(iii)∑n=1^∞(1-βn)〈+∞;(iv)(1-αn)L^2〈1,arbitaryn≥1;(v)αn(1-βn)^2+αm[βn+L(1-βn)-]^2〈1,其中L≥1是{Ti}i=1^N的公共Lipschitz常数,对于x0∈K,设{xn}n=1^∞是由下列定义的复合隐格式迭代xN=αnxn-1+(1-αn)Tnyn,yn=βnxn+(1-βn)Tnxn,其中Tn=TnmodN,则(i)limn→∞||xn-p||存在,对于所有的p∈F;(ii)limn→∞d(xn,F)存在,其中d(xn,F)=infp∈F||xn-p||;(iii)limn→∞inf||xn-Tnxn||=0.本文的结果推广并且改进H—K.Xu和R.G.Ori在2001年的结果和Osilike在2004年的结果,并且在这篇文章中,主要的证明方法也不同与H—K.Xu和Osilike的方法.
简介:证明了一类整系数齐次线性递归数列,当项数n是素数时,第n项与第1项的n次方模n同余.Fermat小定理,以及与Fibonacci数列、Perrin数列有关的一些定理,都可以看作是这一定理的推论.