学科分类
/ 6
109 个结果
  • 简介:进一步讨论亚纯函数的k阶导数具有公共小函数的唯一性问题,得到两个亚纯函数唯一性问题的结果,改进了李平的有关结果.

  • 标签: 亚纯函数 小函数 唯一性
  • 简介:12013年'高教社杯'全国大学生数学建模竞赛D题公共自行车作为一种低碳、环保、节能、健康的出行方式,正在全国许多城市迅速推广与普及。在公共自行车服务系统中,自行车租赁的站点位置及各站点自行车锁桩和自行车数量的配置,对系统的运行效率与用

  • 标签: 优秀论文点评 服务系统 系统优秀论文
  • 简介:研究了平均非扩张型映射T:‖Tx-Ty‖≤a‖x-y‖+b‖x-Tx‖+c‖x-Ty‖,(x,y∈K,a,b,c≥0,a+b+c≤1)的公共不动点的存在性和唯一性.得到平均非扩张型映射T1和T2满足T1T2=T2T1,则T1T2存在唯一的不动点,并且T1和T2存在唯一的公共不动点.本文结果是近期相关文献结果的推广.

  • 标签: 不动点性质 Banach压缩映射 正规结构
  • 简介:一、启发提问图7-771.如图7-77,⊙O1、⊙O2沿直线O1O2作相向运动,请观察:(1)两圆有无公共点?若有公共点?有几个?(2)在哪几个位置时⊙O1与⊙O2有一个公共点?(3)在什么位置时⊙O1与⊙O2有两个公共点?2.设⊙O1的半径为r,⊙O2的半径为R,O1O2=d,试用d、R、r之间的数量关系表示两圆的五种位置关系.3.若两圆相切,则连心线必过.4.连心线是一条直线,相交两圆的连心线公共弧.二、能力训练1.填空图7-78(1)设⊙O1、⊙O2的半径分别为r、R(R≥r).O1O2=d,那么:①如图7-78,⊙O1与⊙O2相离,则dR+r.②如图7-79,⊙O1与⊙O2外切,则.③

  • 标签: 圆心距 位置关系 连心线 公共点 数量关系 圆外切
  • 简介:针对西安市城墙内区域的特点,结合对覆盖率的要求及选址原则,对如何在城墙内选取公共自行车站点进行研究,并建立相应的数学模型,求解模型得到所选区域内的站点分布。通过考虑车位数量以及人流量等因素,建立相应的线性规划模型,利用数据模拟得到应配备的自行车数量。

  • 标签: 公共自行车 站点分布 站点配车数 线性规划模型
  • 简介:本文主要研究极值点与拐点的关系.对于可导函数,极值点x0与拐点(x0,f(x0))不能并存。

  • 标签: 极值点 拐点
  • 简介:首先介绍了2013年高教社杯全国大学生数学建模竞赛D题'公共自行车系统'的命题背景、立意和解题思路;然后说明了评阅要点,评述了获奖优秀论文概况,并且对国家级获奖论文的评阅中存在的不足进行了分析;最后对各省赛区的数学建模竞赛导师的培训提出了一些建议。

  • 标签: 公共自行车 运行规律 数学模型
  • 简介:在不要求映射的连续性和锥的正规性的条件下,我们得到扩张映射的几个公共不动点定理,所得结果改进和推广了原有的许多重要结论.

  • 标签: 锥度量空间 扩张映射 公共不动点
  • 简介:生态环境系统是一个复杂的有待于综合运用生物科学、环境科学、信息科学、数学科学与计算机科学深入研究的信息系统.而其中对生态系统宏观优化调控决策的研究已成为了近年来国内、外数学与生态学工作者深入探讨的一大课题.基于当前生态种群研究须向宏观与微观两极纵深发展、延伸以及数量种群生态学复杂系统建模的需要,本文通过对一类具有竞争机理局部稳定的两种相互作用生态种群模型保解析性及其宏观优化调控的讨论,进一步将生态环境系统的调控严谨化,给一类生态系统的动态分析与调控优化提供了很有价值的方法与手段.这不仅对于两种相互竞争和互惠互存的生态系统的建模与分析具有重要意义,而且对于更为复杂的生态环境系统的动态分析与宏观调控也具有较大的指导作用与应用价值.

  • 标签: 生态种群模型 等倾线方程 密度制约 动态分析 优化与控制
  • 简介:本文讨论了凸曲面的几种定义及其关系,发现有的定义是局部凸的定义,有的是整体凸的定义,有的则对于局部凸和整体凸都适合,最后给出了各种定义之间互推的证明,对于局部凸和整体凸定义之间不能推证的,则说明了原因.

  • 标签: 凸曲面 卵形面 凸多面体 高斯曲率 定义 局部凸
  • 简介:设H是一实Hillber空间,K是H之一非空间凸子集,设(Ti)i=1^N是N个Lipschitz伪压缩映象使得F=∩i=1^NF(Ti)≠Ф,其中F(Ti)={x∈K:Tix=x}并且{αn}n=1∞,{βn}n=1^∞包含[O,1]是满足如下条件的实序列(i)∑n=1^∞(1-αn)^2=+∞;(ii)limn→∞(1-αn)=0;(iii)∑n=1^∞(1-βn)〈+∞;(iv)(1-αn)L^2〈1,arbitaryn≥1;(v)αn(1-βn)^2+αm[βn+L(1-βn)-]^2〈1,其中L≥1是{Ti}i=1^N的公共Lipschitz常数,对于x0∈K,设{xn}n=1^∞是由下列定义的复合隐格式迭代xN=αnxn-1+(1-αn)Tnyn,yn=βnxn+(1-βn)Tnxn,其中Tn=TnmodN,则(i)limn→∞||xn-p||存在,对于所有的p∈F;(ii)limn→∞d(xn,F)存在,其中d(xn,F)=infp∈F||xn-p||;(iii)limn→∞inf||xn-Tnxn||=0.本文的结果推广并且改进H—K.Xu和R.G.Ori在2001年的结果和Osilike在2004年的结果,并且在这篇文章中,主要的证明方法也不同与H—K.Xu和Osilike的方法.

  • 标签: 伪压缩映射 复合隐格式迭代 公共不动点
  • 简介:假设人口增长和人类文明是生态退化的主要驱动因素,结合福雷斯特世界动力学模型,利用机器学习的方法,建立了双层通信网络模型(TCNM)来研究生态退化的问题。

  • 标签: 通信协议 机器学习 世界动力学模型 生态预测
  • 简介:将文[1,4]中定义广义正定矩阵的概念再作推广,并讨论各种不同定义下的广义正定矩阵间的包含关系,给出M-矩阵等价的四种新定义.

  • 标签: 广义正定矩阵 M-矩阵 等价性
  • 简介:在蕴涵格中引和了蕴涵滤子的概念,讨论了蕴涵滤子的一些基本性质,并由此建立了由素蕴涵滤子决定的同余关系及其商蕴涵格,以便为Fuzz推理建立了严格的逻辑基础作些必要的准备。

  • 标签: 蕴涵格 蕴涵滤子 同余关系 商蕴函格