学科分类
/ 3
49 个结果
  • 简介:苏霍林斯基曾说过:“让学生体验到一种自己亲自参加与掌握知识的情感,乃是唤起少年特有的对知识的兴趣的重要条件.”那么怎样让学生体验到学习的乐趣呢?陶行知先生说过:“发明千千万,起点是一问,智者问得巧,愚者问得笨.”问题驱动教学法正是这种思想的体现.

  • 标签: 问题驱动 教学法 案例分析 计数原理 陶行知 知识
  • 简介:本文中用Kneser’s定理得到下列结论一个新的简单证法.设G为初等Abelp-群(运算用加法),S={a1,a2,…,an)为G的一个n项不含有零然的元素列(元素可允许重复),|s|=n=P^m-1+p-2,,其中P为素数,若对G的任意子群H,S最多含有|H|-1项,则:(1)当m=2时,∑^0(S)=G;(2)当m≥3时,∑(S)=G,特别有(1)Olson’猜想r(Zp+Zp)=2p-2;(2)r(+^mZp)=c(+^mZp)=p^m-1+p-2,m≥3.

  • 标签: 初等Abel群 元素列 Dvenport常数 和集
  • 简介:“弃九加法”和“直接加法”相比,具有拨珠少、易算的优点;而弊病是,中位弃九与末位弃十不一致,影响计算的准确性。针对“弃九加法”的不足,《珠算报》97年第10期介绍了“谈集体加余速算法在珠算加法中的运用”和“一目三(五)行先十(双十)法”,通过在各位先...

  • 标签: 剩余数 数字 并行加法 直接加法 教学效果 计算的准确性
  • 简介:<正>计数问题在小学数学竞赛中经常出现,为此本文作一简单介绍。所谓计数,就是数数,把一些对象的具体数目数出来。当然,情况简单时可以一个一个数,如果数目较大时,一个一个地是行不通的。这里介绍两种方法,可以帮助我们计数。一、枚举法我们先通过几个例子来说明什么叫做枚举法。例1用一个1,一个2,一个3可以组成几个不同的三位数?

  • 标签: 三角形 乘法原理 枚举法 自然数 计数问题 数字
  • 简介:图G的一个星因子是G的一个支撑子图,其中每一个分支是一个星图.本文研究完全偶图Km,n的星因子计数,给出了Km,n存在由K个分支构成的星因子的充要条件,进而给出了Km,n星因子计数的公式.

  • 标签: 星因子 星因子 因子计数 星图
  • 简介:利用等价类讨论了从m个不同的整数中任取n个不同数之和能被n整除简单的计算方法.

  • 标签: 等价类 商集
  • 简介:在本文中我们给出Hesenberg矩阵的行列式的—公式,它与计算六角系统的Kekule结构密切相关.更多还原

  • 标签: 六角系统 Kekule结构 Hesenberg矩阵
  • 简介:从多个角度利用多种方法计算一类分装模型的计数,同时给出了相应的概率计算.分装模型就是将n个球分装到m个盒子中计数的模型.分装模型涉及到排列与组合、反演公式、容斥原理、Stirling数、生成函数及整数的分拆等组合数学中的大部分的计数方法.本文从组合数学的不同计数方法入手,详细叙述分装模型在不同情形下的解,深入剖析不同情形下解不同的原因.

  • 标签: 反演公式 容斥原理 生成函数 STIRLING数 分拆数
  • 简介:<正>新的《数学课程标准(实验稿)》中强调:"教材所选择的素材应尽量来源于自然、社会与科学中的现象和实际问题".因此,以其他学科知识为素材的中考数学题——学科渗透型试题,近几年来倍受命题者的关注.所谓学科渗透型试题包含两层含义:一是运用数学知识解决其他学科的问题;

  • 标签: 渗透型 命题者 海拔高度 地理知识 课程标准 兴趣小组
  • 简介:首先研究了Kleene-Stone代数的由素滤子生成的同余关系的性质,然后在此基础上给出了Kleene-Stone代数的分类,最后证明了对每个KS-n代数L(n),存在一个商代数L(n)/~嵌入于有限的KS-n代数Ω(n)中.

  • 标签: Kleene-Stone代数 同余关系 KS-n代数
  • 简介:题:右图是一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是()

  • 标签: 概率题 环形排列 应用 高考 计数 接收器
  • 简介:数学学习离不开思维,数学探索需要通过思维来实现,在初中数学教学中逐步渗透数学思想方法,有助于培养学生的思维能力,形成良好的数学思维习惯,既符合新课程标准的要求,也是进行数学素质教育的一个切入点.

  • 标签: 数学教学 分类思想 渗透 初中 数学思想方法 数学素质教育
  • 简介:<正>《全日制义务教育数学课程标准(实验稿)》指出:"数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分."因此,数学教学要帮助学生"理解和掌握基本的数学知识和技能、数学思想方法,……."所以近几年的中考试卷中结合数学思想方法考查基础知识的试题比比皆是,其中分类讨论思想及其应用的试题尤为多见.这类题目往往难度较大,得分率偏低,其原因就是不能灵活应用分类讨论思想方法.

  • 标签: 分类讨论思想 数学思想方法 数学教学 绝对值符号 实数根 二次函数
  • 简介:<正>分类讨论思想不只广泛应用于解代数题,而且更广泛地应用于解几何题.如角的分类,三角形的分类,四边形的分类,两直线的位置关系的分类,点、直线与圆的位置关系的分类,两圆的位置关系的分类等都需要用分类讨论的思想去解决.特别是几何的有些重要定理的证明,犹如圆周角定理、弦切角定理,都充分体现了分类讨论思想的应用.在近几年的中考试题中,

  • 标签: 分类讨论思想 中考试题 等腰梯形 面积单位 平面直角坐标系 数学问题