简介:在连续Gompertz模型基础上,导出了差分形式的Gompertz模型。通过对肿瘤生长数据的模拟,验证了差分形式的Gompertz模型对连续Gompertz模型具有良好的逼近效果;进一步,对其稳定性进行了研究,讨论了模型参数对平衡点稳定性的影响;最后,研究了一类基于差分形式的Gompertz模型的非线性动力系统的长期行为,数值模拟表明差分形式的Gompertz模型的长期行为对模型参数较为敏感。
简介:用变分方法得到一类非线性差分方程多重周期解的存在性.我们的结果推广了Cai,Yu和Guo[Comput.Math.Appl.,52(2006),1630-1647]的结果,并且这里给出的证明显著地简化了.
简介:研究完备度量空间中一类拟均衡问题的可解性,由此导出著名的Ekeland变分原理。
简介:研究了非多项式增长的变分泛函,利用Orlicz空间理论,得到了其在Orlicz-Sobolev空间中弱序列下半连续的充要条件,推广了关于多项式增长的变分泛函的相应结论。