简介:先建立除环上的矩阵范畴,并证明这个范畴是Abel范畴,然后利用范畴论中的结论给出除环上矩阵方程AXB=D有解的条件。
简介:推广并改进了实数域上线性方程组的反问题及其一系列结果,解决了除环上左线性方程组更具广泛性的一类反问题,给出了此类反问题有(斜)自共轭解及(半)正定自共轭解的充要条件及其解集结构。
简介:设F是一个特征不等于2的域,A是,上的一个可除代数。本文研究了A上多项式环A[x1,X2,…,xn]中理想是有限生成的,以及它的Grobner基;也表明F[x1,x2,…,xn]中有限子集G是F[x1,x2,…,xn]的Griobner基当且仅当G是A[x1,x2,…,xn]中的Grobner基。
简介:
简介:关于化学方程式的“配平”,每个老师可能都有自己独到的见解,可学生面对此问题往往还是会大伤脑筋、甚至于头晕脑胀.其实从数学角度审视之,用方程思想解决这个问题,是一种既妙又易的思维模式,其解题过程可以大大降低“配平”的难度.
简介:通过介绍天津商业大学'稳基础、抓重点,推动数学建模竞赛工作上水平'的具体措施,分析了如何以数学建模竞赛为切入点,促进大学数学教学改革与学风建设,培养学生自我探索、自我思考、自我研究和自我实践的素养,提高学生的综合创新能力。
除环上的矩阵方程AXB=D
除环上左线性方程组的反问题
可除的四元数代数上多项式环的Grobner基
注重思维训练强化学员能力培养
用方程(组)轻松配平化学方程式
以数学建模竞赛为切入点,强化学生创新能力培养