简介:本文通过利用矩阵的kronecker积理论,讨论了矩阵方程:X+AXB+A~2XB~2+……A~kXB~k=C的有解条件以及解的个数.
简介:本文讨论矩阵方程在子矩阵约束下的Hermitian解的共轭梯度迭代算法,先转化成两个低阶方程,然后利用共轭梯度思想分别构造出低阶方程的共轭梯度迭代算法,运用算法求出矩阵方程的Hermitian解及最佳逼近,最后给出了数值实例来验证算法的有效性.
简介:给出了求一类高阶非齐次线性微分方程(组)特解的矩阵解法.即由对应齐次微分方程(组)的n个特解以及非齐次微分方程(组)的自由项构成某线性方程组的增广矩阵,并对该增广矩阵进行初等行变,换,即可求得非齐次微分方程(组)特解的一种简便方法.