学科分类
/ 25
500 个结果
  • 简介:本文讨论了实数域或复数域上的几种类型的矩阵方程:AX=B,XA=B;有解的充要条件,及有解时其解的情况.

  • 标签: 矩阵方程 广义逆 特征值
  • 简介:

  • 标签:
  • 简介:介绍了利用矩阵的初等变换求解矩阵方程的几种常见类型(AX=B、XA=B及AXB=C)及方法,供同学们学习《线性代数》课程参考。

  • 标签: 初等变换 矩阵方程
  • 简介:线性代数是代数学的一个分支,它以矩阵理论为中心,而矩阵方程是应用最广泛的一类方程。给出了矩阵方程AX=0解的结构、解的性质、矩阵方程AX=B有解的充要条件,并给出了逆矩阵矩阵方程中的应用。

  • 标签: 矩阵方程 基础解系 逆矩阵
  • 简介:先建立除环上的矩阵范畴,并证明这个范畴是Abel范畴,然后利用范畴论中的结论给出除环上矩阵方程AXB=D有解的条件。

  • 标签: 除环 ABEL范畴 矩阵方程 充要条件
  • 简介:本文研究了实子矩阵约束下矩阵方程AX:B及其最佳逼近的共轭梯度迭代解法.首先运用矩阵分块将原方程AX=B转换为2个低阶方程,利用共轭梯度的思想构造迭代算法;然后证明了算法的有限步终止性;最后给出数值实例验证算法的有效性.

  • 标签: 子矩阵约束 共轭梯度迭代法 有限步终止性 最佳逼近
  • 简介:本文通过利用矩阵的kronecker积理论,讨论了矩阵方程:X+AXB+A~2XB~2+……A~kXB~k=C的有解条件以及解的个数.

  • 标签: 矩阵方程 KRONECKER积
  • 简介:文中主要应用Cholesky分解定理、CS分解定理和Brouwer不动点定理分别给出了当矩阵A非奇异时两类非线性矩阵方程有正定解的充分条件和必要条件,且证明了对任意的矩阵A第二类方程都有正定解.

  • 标签: 矩阵方程 正定解 充分条件 必要条件
  • 简介:利用四元数体上自共轭矩阵的奇异值分解。得到了实四元数矩阵方程X+AXB=C的最小二乘解的表达式,同时给出了在相应解集中矩阵方程的极小,范数解.

  • 标签: 四元数体 矩阵方程 最小二乘解
  • 简介:本文主要研究解矩阵方程AX+YB=D和AX+XB=D的一种迭代方法.

  • 标签: 矩阵方程 迭代方法
  • 简介:根据特征多项式,实数域上亏损矩阵的广义特征矩阵可用固定线性方程组求,但这个固定线性方程组的未知量个数多于方程个数,从广义若当链中选取部分等式补充到线性方程组,可使广义特征矩阵唯一确定。

  • 标签: 特征多项式 亏损矩阵 广义特征矩阵 实数域 若当标准型
  • 简介:本文讨论矩阵方程在子矩阵约束下的Hermitian解的共轭梯度迭代算法,先转化成两个低阶方程,然后利用共轭梯度思想分别构造出低阶方程的共轭梯度迭代算法,运用算法求出矩阵方程的Hermitian解及最佳逼近,最后给出了数值实例来验证算法的有效性.

  • 标签: 子矩阵约束 Hermitian解 共轭梯度迭代法 最佳逼近解
  • 简介:关于m次矩阵方程:X^m+a1X^m-1+…+am-1X+amEn=0,其中En是n阶单位矩阵,a1,a2,…,am∈R,X∈C^m×n,本文利用矩阵的化零多项式,最小多项式的相关结论以及Jordan标准形分解,讨论了该方程的所有可能解.

  • 标签: 矩阵方程 高次 JORDAN标准形 最小多项式 单位矩阵 分解
  • 简介:证明了关于群的一个结果,由此结果推出几个应用,我们对譬如Kronecker积的不同特征值的个数以及给出的两个矩阵A、B,当A、B有不同特征值时的和进行了估计,我们也讨论了一类线性常微分方程的阶,这类线性常微分方程的解是给出的两个某类线性常微分方程解的积。

  • 标签: 常微分方程 常系数微分方程 KRONECKER 群论 齐次线性 类线性
  • 简介:给出了求一类高阶非齐次线性微分方程(组)特解的矩阵解法.即由对应齐次微分方程(组)的n个特解以及非齐次微分方程(组)的自由项构成某线性方程组的增广矩阵,并对该增广矩阵进行初等行变,换,即可求得非齐次微分方程(组)特解的一种简便方法.

  • 标签: 高阶非齐次线性方程(组) 特解 常数变易法 增广矩阵 初等变换法