简介:通过构造拟上下解的单调迭代过程,在拟解对之间利用Sadvoskii不动点定理获得了Banach空间非线性三阶三点边值问题解的存在性.
简介:讨论了一类非线性分数阶微分方程三点边值问题解的存在性.微分算子是Riemann.Liouville导算子并且非线性项依赖于低阶分数阶导数.通过将所考虑的问题转化为等价的Fredholm型积分方程,利用Schauder不动点定理获得该三点边值问题至少存在一个解.
简介:通过构造一个特殊的锥,利用锥上的不动点指数,研究了Banach空间中二阶三点奇异边值问题多个正解的存在性.
简介:在四阶微分方程非线性项f中含有未知函数“的二阶导数u”的情况下,运用Avery-Peterson不动点定理,研究了一类四阶微分方程三点边值问题三个正解的存在性,得到了该类边值问题存在三个正解的充分条件.
简介:利用上下解方法及Schauder不动点定理,证明了二阶非线性微分方程组三点边值问题:{y"=f(t,y,z,y',z')z"=g(t,y,z,y',z')y(-1)=A,y(1)=B,z(0)=C0,z'(0)=C1,解的存在性,并由此得到四阶非线性微分方程三点边值问题解的存在性,一定程度上推广了前人的一些结果.作为文章结果的应用,讨论了奇摄动四阶半线性三点边值问题,得到该问题解的存在性及解的渐近估计.
简介:中国工业与应用数学大会旨在交流应用数学的研究成果及其在产业界的应用成果,并结合工业中急需解决的关键问题和难点问题,展开广泛的学术交流和讨论。第十三届中国工业与应用数学大会于2014年8月3-6日在云南昆明举行。本届年会会议议题包括6个方面:1)微分方程、控制理论及其应用;2)数值计算及其应用;3)数学建模;4)数理统计及综合数学应用;5)运筹与优化;6)其他和工业与应用数学相关的理论及应用。本次