学科分类
/ 3
57 个结果
  • 简介:在Banach空间中利用一个随机Mann迭代序列组,讨论了随机映射的随机不动点的存在性问题,得出了几个随机不动点定理,改进了相关文献中的相应结果.

  • 标签: 随机Mann迭代序列组 随机不动点 BANACH空间
  • 简介:用矩阵表示图像,构造正交均值差分变换矩阵,对原始图像进行正交变换,进一步取阈值,仅存储绝对值大于阈值的系数,获得数据压缩.解压缩过程只需作逆均值差分变换.最后将该算法分别应用于灰度和彩色图像的压缩处理,结果验证了算法的有效性.由于算法中所有变换都通过矩阵运算处理,且意义直观明了,故该算法是大学线性代数教学中一个非常好的应用案例.

  • 标签: 图像压缩 正交变换 均值 差分
  • 简介:本文引进权的Chcbyshev逼近并给出它的应用。

  • 标签: 逼近 引进 应用
  • 简介:在偏序度量空间中,获得了一些耦合随机不动点定理,引入F-g-不变集新定义,减弱了F的混合g-单调性,所得结果也是近期文献相关结果的推广.

  • 标签: 混合g-单调性 F-g-不变集 耦合随机不动点
  • 简介:有密度依赖者粘性的one-dimensionalcompressible流动的方程的答案的全球存在被证明。明确地,起始的数据上的假设是模常数在可能不同的x=+∞和x=-∞,被说密度和速度在L~2,并且密度上面并且下面被围住离开零。Theresults也证明甚至在这些条件下面,既不真空状态也不集中状态能在有限时间被形成。

  • 标签: 密度 粘性 可压缩NAVIER-STOKES方程 数学分析
  • 简介:设H是一实Hillber空间,K是H之一非空间凸子集,设(Ti)i=1^N是N个Lipschitz伪压缩映象使得F=∩i=1^NF(Ti)≠Ф,其中F(Ti)={x∈K:Tix=x}并且{αn}n=1∞,{βn}n=1^∞包含[O,1]是满足如下条件的实序列(i)∑n=1^∞(1-αn)^2=+∞;(ii)limn→∞(1-αn)=0;(iii)∑n=1^∞(1-βn)〈+∞;(iv)(1-αn)L^2〈1,arbitaryn≥1;(v)αn(1-βn)^2+αm[βn+L(1-βn)-]^2〈1,其中L≥1是{Ti}i=1^N的公共Lipschitz常数,对于x0∈K,设{xn}n=1^∞是由下列定义的复合隐格式迭代xN=αnxn-1+(1-αn)Tnyn,yn=βnxn+(1-βn)Tnxn,其中Tn=TnmodN,则(i)limn→∞||xn-p||存在,对于所有的p∈F;(ii)limn→∞d(xn,F)存在,其中d(xn,F)=infp∈F||xn-p||;(iii)limn→∞inf||xn-Tnxn||=0.本文的结果推广并且改进H—K.Xu和R.G.Ori在2001年的结果和Osilike在2004年的结果,并且在这篇文章中,主要的证明方法也不同与H—K.Xu和Osilike的方法.

  • 标签: 伪压缩映射 复合隐格式迭代 公共不动点
  • 简介:本文把具有任意形状和个数的周期裂缝的弹性半平面基本问题化为了某种特殊类型的奇异积分方程,证明了其解的存在和唯一。并对周期共线直裂缝的弹性半平面问题,给出了封闭形式的解。更多还原

  • 标签: 半平面 奇异积分方程 封闭形式 共线 路见可 外应力
  • 简介:设X是一致光滑的Banach空间,T:D(T)属于X→2^x是局部严格伪压缩映射且有不动点.设Q是从X到D(T)上的非扩张保核映射.任取x0∈D(T)归纳定义:xn+1=Qpл,pn∈(1-cn)xn+cnTQyn,yn∈(1-dn)xn+dnTxn.如果存在有界序列{wn}和{zn},wn∈TQyn,zn∈Txn.则{xn}强收敛于T的唯一不动点.其中数列{cn}和{dn}满足适当条件.

  • 标签: 不动点 局部严格伪压缩映射 ISHIKAWA迭代 一致光滑的Banach空间
  • 简介:在G-度量空间中,获得了非线性压缩算子F:X×X→X满足混合-g-单调性质下的耦合叠合点结果.减弱了压缩条件,所得结果也是近期文献相关结果的推广.

  • 标签: 耦合叠合点 混合-g-单调性质 (α)-g-容许
  • 简介:引进了MengerPM-空间中多值情形下的相容映象和弱相容映象概念,并研究了二者之间的联系.在此基础上,获得了MengerPM-空间中若干新的不动点和重合点定理.最后,给出了这一结果在度量空间中的应用.

  • 标签: MENGER PM-空间 不动点和重合点 多值映象 弱相容映象
  • 简介:给出了n阶形状参数的三角多项式T-Bézier基函数.由形状参数的三角多项式T-Bézier基组成的形状参数的T-Bézier曲线,可通过改变形状参数的取值而调整曲线形状,随着形状参数的增加,形状参数的T-Bézier曲线将接近于控制多边形,并且可以精确表示圆、螺旋线等曲线.阶数的升高,形状参数的取值范围将扩大.

  • 标签: BERNSTEIN基 T-Bézier基 T-Bézier曲线 形状参数
  • 简介:在一般的实Banach空间中,研究Lipsehitz渐近伪压缩映象和渐近非扩张映象不动点的迭代逼近问题,给出Ishikawa迭代序列强收敛的充要条件,所得结果改进和推广了张石生,肖建中等人的主要结果,修正和推广了朱玲娣等人的相应结果.

  • 标签: 渐近伪压缩映象 渐近非扩张映象 修改的Ishikawa迭代序列 不动点
  • 简介:研究了Lipschitz伪压缩映射的黏滞迭代方法.设E为一致光滑Bannach空间,K为E的闭凸子集,TK→K为Lipschitz伪压缩映射且其不动点集F(T)非空,f为K上的压缩映射且t∈(0,1).若黏滞迭代路径{xt},xt=(1-t)f(xt)+tTxt且对任意初始向量x1∈K,迭代序列{xn}定义为xn+1=λnθnf(xn)+[1-λn(1+θn)]xn+λnTxn,则当t→1-和n→∞时,{xt}和{xn}都强收敛于T的不动点,同时该不动点还是一类变分不等式的解.

  • 标签: 一致光滑BANACH空间 伪压缩映射 不动点 强收敛
  • 简介:首先将[3]的双Possion风险模型推广到干扰的一种新模型。然后运用鞅论的方法得出破产概率满足Lundberg不等式和一般公式。以及当个体所赔服从指数分布时的破产概率的具体表达式。

  • 标签: 干扰 风险模型 停时 破产概率 保险公司
  • 简介:本文在文献[6]的基础上,集中考虑一类灾难的非线性马尔可夫分枝过程的基本问题-唯一性,正则性和灭绝性。文章首先给出其Q-过程唯一性的证明,然后得出该畔程的正则性与[3]非线性马尔币夫分枝过程一样,最后,我们给出该Q-过程以概1l灭绝的充要条件是Q-过程正则。

  • 标签: 发生函数 唯一性 正则性 灭绝概率