简介:野生动物资源功能用途的复合性使得其受到生物系统及经济系统双重约束,在传统生物均衡模型基础上,分别构建经济系统和生物系统的联立方程组模型,然后根据目标函数形成野生动物资源动态均衡管理的理论模型及实证应用分析,得出结论:1)野生动物资源最优种群水平不仅受种群内禀增长率和栖息环境最大承载量的影响,也受到市场价格,维持及收获的成本及税费,产品利用率以及社会平均折现率的影响.但长期来看,环境承载量是影响种群水平的最终决定性因素.2)经济系统的各项变量并不影响野生动物最优种群水平的最终结果,而只影响其趋向最终结果的路径.3)最优猎捕收获量主要取决于最优种群水平以及环境承载量和种群内禀增长率.4)麝类资源的生物系统、经济系统的各个因素的影响方向和影响力大小,并不完全和一般假设相同.
简介:设Gl和岛是两个连通图,则G1和G2的Kronecker积GIXG2定义如下:V(G1×G2)=V(G1)×V(G2),E(G1×G2)=((ul,vl)(u2,u2):ulu2∈E(G1),ulu2∈.E(G2)).我们证明了G×Kn(n〉4)超连通图当且仅当k(G)n〉6(G)(n-1),其中G是任意的连通图,Kn是n阶完全图.进一步我们证明了对任意阶至少为3的连通图G,如果圪(G)=δ(G),则G×Kn(n〉3)超连通图.这个结果加强了郭利涛等人的结果.
简介:设M为S^n+1中紧致极小超曲面,Mp,n-p为Sn+1的Clifford极小超曲面,若Spec(M)=Spec(Mp,n-p)在一定条件下,我们可以得出M与Mp,n-p等距同构。
简介:设An+1是n+1维仿射空间,D表示An+1上的平坦联络,M是n维光滑流形,x:M→An+1是一个非退化的仿射浸入.对于M上的横截向量场ξ,存在唯一的选择(称为仿射法向量场),使得上述浸入是一个Blaschke浸入(见[2]).设▽是此浸入由D在M上诱导的仿射联络,我们有:DXY=▽XY+h(X,Y)ξ这里X,Y,Z是M上的切向量场,h是对称的双线性形式,由它可以定义M上的伪黎曼度量G,称为Blaschke度量,S称为M的形态算子.若S=λid,则称M为仿射球,当S=0称M为虚仿射球.设▽为由Blaschke度量G在M上诱导的Levi-Civita联络,定义:C(X,Y,Z)=(▽Xh)(Y,Z)称C为M的三次形式,K为差异张量,J为Pick不变量,L1为仿射平均曲率.
简介:利用Logistic映射和一个超混沌系统产生一个复杂的混沌时间序列,对图像进行置乱操作,重新排列图像的各像素,再进行两轮扩散操作,得到一个新的基于Logistic映射和超混沌系统的图像加密方案,并进行仿真实验和性能测试。实验证明,该加密方案有较好的密码学特性,能够对抗统计分析攻击、差分攻击等。
简介:难忘的1997年正月既望(农历15),我的伴侣田秀英同志病情稍有好转。是夜月园风清,我俩依栏赏月索句。我拿来几本《齐鲁珠坛》交与她看,阅毕她兴致勃勃地说:“我看过许多珠坛刊物,都无过《齐鲁珠坛》,它有强大的生命力,是有发展前途的。从我的眼光看,一定会在2000年初,知名度将誉满海内。”我点头信然。沉思良久她接着说:“我知道我是不能同你跨过世纪了,是桩憾事。只希望2000年到来之时,把我所写的诗词与《情系珠坛》趣解十例送到该刊发表。那时正是庆贺创刊廿周年的日子以表我对珠坛的厚爱与敬意!”秀英的眼光是看准了。时值今日,我将这些失散的文稿加以整理,适逢《齐鲁珠坛》创刊廿周年的庆贺大典。将此文献于本刊及广大同仁,诗词为《沁园春》(献给珠坛)。迷宫十例均为《情系珠坛》。奇妙的是她的诗词中深蕴着解题的奥秘,以启人深思远达,将此猷于读者:沁园春情系珠坛(纪念本刊创刊廿周年有感)廿载风雨, 伟业光照千秋,热血育坛,赞闪光金牌智铸就。奇花独秀。拥千百英儒,欤《齐鲁珠坛》,共奋丕业。驰聘骅骝。努力践行,岱岳观澜,执著探求。浪击心头。菁菁绿...
简介:研究了超凸度量空间中非扩张映象不动点的逼近问题,得到了具误差的Ishikawa迭代序列收敛到不动点的一个充要条件.