简介:考虑由磁流体力学方程组控制的二维不可压缩流体的初边值问题,在边界光滑的有界区域中,当(u0,B0)∈((Wm,p(Ω))2×Wm,p(Ω))时,利用Galerkin方法和先验估计,得到了相应的初边值问题存在唯一的弱解(u(.,t),B(.,t))∈((Wm,,(Ω))×Wm,p(Ω)),并证明了弱解对初值(U0,B0)具有连续依赖性.
简介:在Leslie-Gower捕食模型中引入乘积型Allee效应,并分析模型的性质.首先,模型存在正向不变集,解是一致有界的.其次,讨论了平衡点存在和稳定的条件,并利用Liapunov函数方法得到正平衡点全局渐近稳定的充分条件.最后,根据Hopf分岔定理分析了分岔现象出现的条件和在这个过程中产生的极限环.