简介:一、启发提问图6-51.如果6-5,在△ABC中,∠C=90°(1)如果∠A=45°,则a=.即:ab=,ba=.(2)如果∠A=30°,则c=a,b=a,即ab=,ba=.(3)如果∠A的大小一确定,那么ab和ba是否也随之而确定呢?2.在△ABC和△A′B′C′中,∠C=∠C′=Rt∠如果∠A=∠A′,则aba′b′反之如果ab=a′b′,则∠A=∠A′吗?二、读书自学 P20~P23三、读书指导1.正切、余切的意义如图(5)中,在△ABC中,∠C=90°,则:∠A的正切记为:tgA=∠A的( )∠A的( )∠A的余切记为:ctgA=∠A的( )∠A的( )其中∠A的大小一定,则tgA,c
简介:一、启发提问1.如图6-1,在△ABC中,∠C=90°.(1)如果∠A=30°,则ac=,bc=.(2)如果c=2a,则∠A=,∠B=.图6-1 图6-2 2.如图6-2,在△ABC中,∠C=90°.(1)如果∠A=45°,则ac=,bc=.(2)如果a=b,则∠A=,∠B=.3.在Rt△ABC和Rt△A′B′C′中:∠C=∠C′=90°.(1)如果∠A=∠A′,那么:BCAB=B′C′A′B′成立吗?(2)如果BCAB=B′C′A′B′,那么:∠A=∠A′吗?从上面的问题中我们不难看出在直角三角形中:如果某一个锐角的度数一定,则相应的直角边与斜边的比值也就随之确定,反之也成立.
简介:一、问题提出一家鞋店在一段时间内销售了某种女鞋30双,其中各种尺码的鞋的销售量如下:鞋的尺码(单位:厘米)2222.52323.52424.525销售量(单位:双)12511731 在这个问题上,鞋店关心的不是鞋的尺码的平均数,而是关心哪种尺码的鞋销售得最多的问题。因而将产生一种新的特征数字来描述这组数据的集中趋势.二、阅读教材 P162-P165三、自学指导1.什么是众数?在一组数据中,的数据叫做这组数据的众数.本概念的特点:范围:在一组数据中对象:其中的一个数据特征:这个数据出现的次数最多.2.什么是中位数?将一组数据按排列,把处在的一个数据(或)叫做这组数据的中位数.本概念特点:方式:
简介:一、启发提问图7-461.如图7-46,圆心到直线l的距离就是半径OA,由上节知识可知直线l与⊙O,这里的直线l有两个限制条件,它们是,.2.圆的切线垂直于经过切点的.3.切线性质定理的两个推论的题设和结论分别是什么?4.切线的性质定理及其两个推论的题设和结论有什么关系?二、例题示范例1 已知:如图7-47,点C是⊙O的AB的中点,CD∥AB.求证:CD是⊙O的切线.分析 要证CD是⊙O的切线,根据判定定理只需要连结OC,证明OC⊥CD即可;用垂径定理由已知条件可知OC⊥AB,而AB∥CD,因此问题就得以解决.证明(略).图7-47 图7-48 例2 如图7-48,已知ABCD的
简介:由于设备会随着使用时间的增加和自身寿命增长引起的退化而逐渐磨损失效进而发生故障.因此对于生产企业来说,想要提高自身竞争力,就要在生产过程中合理地安排预防性维护以减少设备故障导致的计划外停机,防止生产计划和生产线的中断,从而才能获取更多收益.本文从生产企业的角度出发,提出单机生产系统的非等周期不完美预防性维护与生产的联合优化策略,综合考虑生产价值、生产成本、生产延迟成本及各类维护成本等,构建了总利润率模型,目标是使总利润率最大化.其中涉及到的三类维护方式为(1)完美维护——即更换;(2)小修维护——即使设备“恢复如旧”;(3)不完美预防性维护——即使设备状态恢复到介于“完全如新”与“恢复如旧”之间的某状态.最后本论文通过数字实例,验证了新策略模型在实际生产应用中的有效性.