简介:ASYMPTOTICBEHAVIOROFOPERATORSOFPROBABILISTICTYPEINL_pSPACES¥CHENWENZHONG;CUIZHENLU(DepartmentofMathematicsXiamenUniversity,Xi?..
简介:本文主要讨论了高阶Kirchhoff方程的指数吸引子,对于低阶的Kirchhoff方程的指数吸引子,有着广泛的研究,本文在低阶类型方程研究的基础上,研究了高阶Kirchhoff类型方程的指数吸引子.首先,对于高阶Kirchhoff方程中的非线性项,进行了合理的假设,运用了广义Gronwall不等式,Young不等和Poincare不等式,结合Sobolev空间理论,证明了该方程的动力系统的Lipschitz连续性,离散的挤压性质,然后获得了指数吸引子.
简介:对算子T的Bishop性质(β)进行“局部化”,得到T的新的集值函数A(T),E1(T),E2(T),C1(T),Cx(T),并讨论它们之间的相互关系以及它们与T的谱结构的关系.借助这些新概念我们得到算子的可分解性与次可分解性的新的充要条件和谱特征.
简介:利用对称内积的Schmidt正交化方法证明了各阶主子式不为零对称阵的LDLT分解.引入两个向量组关于弱内积广义正交的概念,并构造了将两组含相同个数向量的线性无关组化为广义正交组的广义Schmidt正交化方法.最后应用这一方法证明了各阶主子式不为零矩阵的LDU分解及一些相关的结果.