简介:设T∈H(H),T=U|T|是算子T的极分解,则定义T^λ=|T|^λU|T|^1-λ和T^λ(*)=|T*|^λU|T*|^1-λ,(其中0〈λ〈1)分别为算子的广义Aluthge变换和广义*-Aluthge变换.本文中主要研究了三者之间的几种谱的关系.同时,还证明了算子T满足修正的Weyl定理当且仅当弘满足修正的Weyl定理当且仅当T^λ(*)满足修正的Weyl定理.最后证明了算子T满足a—Weyl定理当且仅当T^λ满足a—Weyl定理.
简介:Inthispaper,thevariablecoefficientSine-Gordontypeequationuxt=a(t)sinu+β(t)uxx+k(t)(xux)xisdiscussed.ItisrelatedtotheeigenvalueproblemVx=QV.Thestructureequationandtheevolutionlawsofscatteringdataforthesecondequationarederivedandtheinversescatteringsolutionofthefirstequationisobtained.