简介:Γ函数的表示法张占通,李效忠,潘杰(天津理工学院)(合肥工业大学)Г函数是熟知的超越函数之一,它在微分方程、概率论、积分变换和数值计算等数学分析中有着广泛的应用.我们将在实数域和复数域内给出Г函数的各种不同定义或表示法,证明它们的等价性,并简单介绍Г...
简介:代数法——不定方程富顺县城关镇教办室李国宣用字母代替未知数,列方程解应用题,在前面已经研究了,所列方程中只含一个未知数的情况,如:鸡兔同笼,共有头90个,足252只,笼中鸡、兔各多少只?设有x只兔,则有(90-x)只鸡。由题意可得方程4x+2×(90...
简介:用对应法解题电子科大子弟校缪立加如果问:自然数中奇数与偶数比较,哪一类数多?同学们会不加思索地回答:奇数与偶数的个数一样多。这样回答是正确的。如果问:自然数与偶数比较,哪一类数多?同学们也会不加思索地回答:那还用说,肯定自然数多。这样回答就错了。实际...
简介:数学“检验法”在初中教学中成效显著,那在高中教学是否可行呢?经过试验发现成效也依然是显著的.现将结合本人的教学实践认识及做法总结如下.
简介:假设调整法及应用绵竹大西街小学邓寒梅王传虎假设调整法是一种特殊的解题策略。把题目中的条件经假设进行推算,然后将假设条件下所得结果与题目中的已知条件进行对比,最后加以适当调整,即可求出正确结果。在我国古代算术中,解有关“鸡兔同笼问题”,“龟鹤问题”或“...
简介:把一个多项式化为几个整式的乘积的形式,叫做多项式的因式分解.因式分解是紧接着整式乘除的一个数学内容,它和整式乘法互为逆运算.因式分解的应用比较广泛,可以运用它来简便计算,也可以用它化简多项式求值等.因式分解的方法有提公因式法、公式法、十字相乘法、分组分解法等,比较常用的方法是提公因式法和公式法.
简介:将Cauchy凝聚判别法进行推广,得到正项级数一个新的判别法.该判别法包含了若干已有的结论,同时也产生了一些新的结论.实例说明了这些结论的有效性.
简介:本文是以正定圆锥函数为基础来建立共轭方向法。由于正定二次函数是正定圆锥函数的特殊情况,正定圆锥函数是正定二次函数的扩充,因此本文建立的正定圆锥函数的共轭方向法就是以正定二次函数为基础建立起来的共轭方向法的推广,它在理论上,将后者向前推进了一大步,在应用上,扩大了后者的应用范围。
简介:由定积分的可积条件与分部积分法推出一种利用反函数求解定积分的简捷方法.
简介:结合自己的工作,对Gowers-Maurey系列成果获Fields奖以来的研究的新动态作一综述。本文是上篇,主要讨论含遗传不可分解空间在内的G-M型空间的若干品种。
简介:初中几何中,求符合某些确定条件的点的集合是一类常见习题,很多学生在求解该类问题时都会遇到不同程度的困难;通过自己的教学实践,笔者发现主要问题在于;学生难以找封问题的突破口和切人点以及问题的实羼线上或平面内有无数个点,
简介:在工科“高等数学”教材中,二次曲面的形状一般都是用截痕法进行研究的,即用一系列平行平面截已知二次曲面所得的截线来确定二次曲面的形状,利用截痕法画二次曲面时,
简介:研究交错级数收敛性判别法.通过计算级数通项的极限和单调性得到三个判据,并对其中两个结论给出形式简化的推论,最后举例说明所提判别法的应用.
简介:一、回归法解高考选填题回归就是把新研究的问题,回归到原始状态,然后由原始状态出发,借助定义或一些简单的模型去解决问题的一种思维方式,它打破了常规思维,是一种“纯天然”的,没有其它干扰,可以使复杂问题简单化.提高兴趣,开阔视野培养能力.现以几道高考题为...
简介:一、引言在中专数学课本(第四册)求条件极值问题中,介绍了拉格朗日乘数法,即求函数u=f(x,y,z)在条件φ(x,y,z)=0下的极值.先通过构造函数F(x,y,z)=f(x,y,z)+λφ(x,y,z),这里λ为常数;通过对辅助函数F(x,y,z)...
简介:对于单位圆盘内的解析函数f(z)=z+^∞∑(k=2)akz^k,本文根据D^nf(z)/z给出了判别函数f(z)为单叶函数的几条判别法则,其中D^0f(z)=f(z),D^1f(z)=Df(z)=zf′(z),D^nf(z)=D(D^(n-1)f(z)),n∈N.
简介:(三)数列、极限、数学归纳法遂宁中学奉文清邓易修学习导引:数列是中学数学的一项重要内容,它不仅有着广泛的实际应用,而且是对学生进行计算、推理等基本训练和综合训练的重要题材,并为进一步学习高等数学打下坚实的基础。等差数列与等比数列的定义、通项公式、前n...
简介:2017年7月14日,以"工业应用数学在中国及其他亚太地区:回顾与展望"为主题的为期一天的研讨会在上海交通大学陈瑞球楼204室成功举办。作为"第十四届国际自由边界问题理论及应用"会议的嵌入会议,本次研讨会旨在探讨如何深化中国学术界与工业界在数学领域的合作,同时也特别回顾了中国工业应用数学工作坊(math-for-industry)的创始人谭永基教授为中国工业应用数学的发展所做出的突出贡献。
简介:结合自己的工作,对Gowers-Maurey系列成果获Fields奖以来的研究的新动态作一综述.本文是上篇,主要讨论含遗传不可分解空间在内的G-M型空间的若干品种.
简介:数列是高考的重点、难点,高考试题往往以数列题为压轴题对学生的思维能力进行全面地考察在数列问题中,不等关系的证明更是难点中的难点.证明数列中不等关系的方法常见的有:放缩法、构造函数法、数学归纳法等但前两种方法技巧性太强,不好掌握,而后一种方法运算量庞大,难以实施到底本文介绍一种证明数列不等关系的有效方法:拆项法.
Γ函数的表示法
代数法——不定方程
用对应法解题
数学“检验法”教学初探
假设调整法及应用
实际问题中的因式分解——提公因式法和公式法
Cauchy凝聚判别法的推广
圆锥函数的共轭方向法
反函数法求定积分
关于G—M成果研究的若干新动态I—G—M型空间的若干品种
几何问题中的“交轨法”
空间曲面的旋转——伸缩法画图
交错级数收敛性判别法
高考题巧解二法
构造法在解题中的应用
单叶函数的几条判别法
(三)数列、极限、数学归纳法
以满足工业需求为导向的应用数学研讨会会议报告
关于G-M成果研究的若干新动态Ⅰ——G-M型空间的若干品种
拆项法证明数列不等式