简介:Thispaperconsiderstheasymptoticstabilityanalysisofbothexactandnumericalsolutionsofthefollowingneutraldelaydifferentialequationwithpantographdelay.{x′(t)+Bxd(t)+Cx′(qt)+Dx(qt)=0,t>0,x(0)=X0,}whereB,C,D∈C^d×d,q∈(0,1),andBisregular.Aftertransformingtheaboveequationtonon-automaticneutralequationwithconstantdelay,wedeterminesufficientconditionsfortheasymptoticstabilityofthezerosolution.Furthermore,wefocusontheasymptoticstabilitybehaviorofRunge-Kuttamethodwithvariablestepsize.ItisprovedthataLstableRunge-Kuttamethodcanpreservetheabove-mentionedstabilityproperties.
简介:Thispaperfirstpresentsthestabilityanalysisoftheoreticalsolutionsforaclassofnonlinearneutraldelay-differentialequations(NDDEs).Thenthenumericalanalogousresults,ofthenaturalRunge-Kutta(NRK)methodsforthesameclassofnonlinearNDDEs,aregiven.Inparticular,itisshownthatthe(k,l)-algebraicstabilityofaRKmethodforODEsimpliesthegeneralizedasymptoticstabilityandtheglobalstabilityoftheinducedNRKmethod.
简介:ImplicitRunge-Kuttamethodishighlyaccurateandstableforstiffinitialvalueproblem.ButtheiterationtechniqueusedtosolveimplicitRunge-Kuttamethodrequireslotsofcomputationalefforts.Inthispaper,weextendtheParallelDiagonalIteratedRungeKutta(PDIRK)methodstodelaydifferentialequations(DDEs).WegivetheconvergenceregionofPDIRKmethods,andanalyzethespeedofconvergenceinthreepartsfortheP-stabilityregionoftheRunge-Kuttacorrectormethod.Finally,weanalysisthespeed-upfactorthroughanumericalexperiment.TheresultsshowthatthePDIRKmethodstoDDEsareefficient.
简介:1.IntroductionConsidertheinitialvalueproblemwhichisassumedtohaveauniquesolutiony(t)ontheinterval[0,+co).Forsolving(1.1),considerthes--stageimplicitRunge-Kutta(IRK)methodandthes-stagemono-implicitRunge-Kutta(MIRK)method{2,51swhereh)0isthestepsize,hi,c...
简介:在这篇论文,为解决单个延期的二拍子的圆舞连续性Runge-Kutta(TSCRK)方法的一个班微分方程(DDE)被介绍。方法被给的这的数字稳定性的分析。我们考虑二个不同盒子:(ⅰ)τ≥h,(ⅱ)τ