简介:设P(G,λ)是图的色多项式。如果对任意使P(G,λ)=P(H,λ)的图H都与G同构.则称图G是色唯一图.这里通过比较t+1色类的色划分数目,讨论了由Koh和Teo在文献[1]中提出的问题(若│ni-nj│≤2.当min(n1,n2,…,nt)充分大时,完全t部图K(n1,n2,…,nt)是否是色唯一图?)。改进了文献[5]中的结果。证明了若∑1≤i≤tai^2=T.min{n+a1,n+a2,….nt+at,n-1}≥(T+1)/2,则K(n+a1.n+a2,….n+a,)是色唯一图(其中ai是实数,n+ai是正整数)。从而证明了若│ni-nj│≤k(i.j=1,2.…,t).min{n1.n2,…,nt}≥tk^2/8+1.则K(n1,n2,…nt)是色唯一图。
简介:本文研究了单个承运商和两个货运代理在双向港口间提供往返货运服务的航运服务链。由于港口间货运需求的内在不平衡,货运公司在多港口间的空箱调运会产生巨大的空箱调运费用。分别构建了承运商承担和承运商与货运代理共同承担空箱调运的数学模型,通过数学模型和数值算例分析了不同市场条件下的空箱调运责任和运力定价策略。研究发现承运商和货运代理是否采用定价策略来平衡需求取决于双向港口间货运市场的潜在需求差异。同时,承运商与货运代理的空箱调运分摊为非此即彼策略,当空箱调运成本大于某阈值时,承运商独自承担空箱调运责任;反之,货运代理承担空箱调运责任。而且货运代理承担模式增加整个海运链的利润,但进一步加剧空箱的不平衡状况。
简介:在供应链知识服务网络中,知识创造、技术更新是企业持续发展、获得竞争优势的最重要方式。对具有企业核心价值的知识来说,知识成本的投入是采用自我研发的方式还是由专业化的知识服务商提供,对企业的未来发展战略以及投资回报都有直接影响。本文在研究一个知识提供方和一个知识需求方的条件下,通过构建Nash博弈、以知识提供方为主导的Stackelberg博弈、以知识需求方为主导的Stackelberg博弈和合作博弈四种模型,对知识投入成本、价格以及收益进行博弈研究,最终给出最优解。结论指出,供应链若获得最大收益,则知识提供方与知识需求方应该建立战略联盟或合作框架,在供应链最大收益的情况下协商内部分配问题,同时该种情况下的知识成本投入也最大;对于以投入知识获取收益的企业来说,以知识提供方为主导的Stackelberg均衡博弈模型是较好的选择。
简介:为了解决M/M/c模型在实际运用中模拟精度不高及使用范围有限的问题,本文立足系统状态变化与输入率和服务率的关系,通过引入输入概率和服务度,构建依赖系统状态的递进式输入率和服务率。递进式输入率和服务率通过研究系统实际运行状况设定临界值,其中输入率分为两阶段,服务率分为三阶段。此外,结合递进式输入率和服务率及排队论状态转移过程构建了递进式M/M/c模型,并采用后确定法确定模型参数。递进式M/M/c模型是M/M/c模型的扩展形式,提高了M/M/e模型的模拟精度,在一定程度上拓展了模型的应用范围。最后,通过一个生活实例验证了递进式M/M/c模型的优化性和实用性。