简介:关于惩罚的确定性及其严重性是否能够有效地影响组织内部雇员的信息安全遵从行为,已有的研究结论尚存在着严重分歧。为了继续探索惩罚对信息安全遵从行为的影响作用,构建了信息安全遵从博弈模型,依据该模型和存在道德风险的委托人——代理人理论,分析了惩罚的确定性以及适度的惩罚严重性对信息安全遵从行为的激励机制,并对惩罚的适度性进行了数值模拟。研究表明:(1)作为委托人的组织可以设计出包含适度惩罚的最优激励契约,并获得最优的信息安全遵从收益;作为代理人的雇员不仅将接受该契约,并且会按照组织所期望的努力水平去遵从信息安全制度。(2)惩罚的确定性和适度性两者能够有效地影响雇员的信息安全遵从行为。(3)组织可以根据雇员的风险规避测度、外部机会收益、激励报酬以及信息安全产出结果这四个因素来设置适当的惩罚额度。这些研究结果将有助于信息安全管理者深入地理解并有效地管理组织内部雇员的信息安全遵从行为。
简介:直觉犹豫模糊集集成了直觉模糊集和犹豫模糊集的优势,能更有效地刻画决策者偏好不一致的情况。距离测度一直是研究的热点问题,但尚没有文献研究直觉犹豫模糊集间的距离测度,因此本文定义了直觉犹豫模糊集问的Hamming距离、Euclidean距离和广义距离,同时考虑每个元素的权重,定义了加权距离。犹豫度是直觉犹豫模糊集的重要特性,因此在考虑犹豫度的基础上,又定义了一些距离测度。这些距离测度不仅考虑了直觉犹豫模糊数间的差异,同时考虑了犹豫度的影响,决策者可以根据对直觉犹豫模糊数和犹豫度之间偏好的不同,设置不同的偏好值得到距离测度。然后基于这些距离测度,又提出了直觉犹豫模糊环境下的TOPSIS法。最后通过实例说明了所提出的TOPSIS法的合理性与实用性。