简介:为了实现GPS信号缺失下的移动机器人自主导航,解决传统粒子滤波中的粒子退化以及粒子贫乏引起的移动机器人定位和导航精度下降问题,提出了基于小生境理论的启发式蝙蝠优化粒子滤波的同时定位与地图构建算法。首先,在启发式蝙蝠优化算法的速度和位置更新过程中,引入惯性权重,加快了算法寻优精度,提高了收敛速度;然后,利用小生境理论进一步优化启发式蝙蝠算法,利用排挤机制和惩罚函数,有效地保证了种群的多样性,提高了算法的全局寻优能力;最后,将基于小生境理论的启发式蝙蝠优化算法用于传统粒子滤波采样中,使得粒子能够智能、快速地向高似然区域运动,同时提高了传统粒子滤波算法的全局寻优能力和寻优精度。实验结果表明:该算法显著提高了移动机器人导航和定位的精度和实时性。
简介:基于Krein空间的鲁棒Kalman滤波器与通过其它方法建立的鲁棒Kalman滤波器相比有较高稳态精度。文中将基于Krein空间的鲁棒Kalman滤波方法用于导弹捷联惯导系统动基座传递对准,并与标准Kalman滤波进行了比较。仿真结果表明,在垂直比力参数存在摄动的情况下,如果基于Krein空间的鲁棒Kalman滤波器的参数选取适当,它的精度鲁棒性优于标准Kalman滤波。
简介:针对SAR图像匹配及定位需要耗用不等的计算时间而造成的量测不等间隔输出和量测信息滞后问题,提出一种新的SAR时延补偿算法。该算法在标准卡尔曼滤波(KF)基础上,当SAR有量测信息生成时,根据多模型方法进行量测预测,利用预测值修正SINS状态;而SAR无量测信息输出时,通过插值方法生成量测信息来改善系统滤波精度。仿真结果表明,采用基于多模型量测预测的KF算法可以将位置误差由45m减小到10m以内,航向角稳态误差值小于5.8";而在此基础上叠加插值预测算法可以将位置误差进一步控制在6m以内,航向角稳态误差小于4.7",证明了本文提出的算法能够有效补偿SAR的随机时延并提高组合导航系统的解算精度。
简介:在详细分析光纤陀螺零漂的基础上,提出了先用滤波算法对光纤陀螺信号进行预处理,然后采用RBF神经网络对滤波后的信号进行建模的方法.针对光纤陀螺信号特点分别采用FLP算法、小波滤波算法、解相关变步长LMS自适应滤波算法对其进行了预处理,比较三种滤波方法,小波滤波算法效果优于其它两种预处理方法,但针对基于预处理后的陀螺信号采用RBF神经网络进行建模时,小波滤波预处理后的信号在建模精度上却是最差的,而对FLP算法滤波后的信号进行RBF建模,建模精度提高了两个数量级。结果表明:基于FLP算法的RBF神经网络在光纤陀螺中的建模是有效的,可大大提高建模的精度。