简介:摘要:捷联惯导系统是自动驾驶的必备功能,捷联惯导系统为自动驾驶提供了较为准确的速度/位置、航向/姿态,并为后续与GNSS的融合提供了可能。本文首先概述捷联惯导系统,然后详细分析了捷联惯导系统主要的子系统,包括指令解算、姿态阵解算、比力坐标变换、导航解算。
简介:针对Kalman滤波器在捷联惯导系统(SINS)初始对准中的应用,系统分析了Kalman滤波器参数(包括估计误差协方差阵初值P0,模型噪声方差阵Q和量测噪声方差阵R)选取对系统状态变量的估计精度和收敛速度的影响。采用协方差性能分析法,进行了Kalman滤波器参数优化仿真,仿真结果表明:调整扁的取值可改变状态变量估计的收敛速度,调整Q或R的取值,既可改变状态变量(尤其是陀螺误差)的收敛速度又可改变它们的估计精度。综合考虑时,局的取值要比真实值大一些,Q和R的取值要比真实值小一些,这样既可缩短陀螺误差和加速度计偏置误差的估计时间,又可提高它们的估计精度。文中还给出了使滤波器正常可靠工作的P0、Q和R参数的范围。
简介:针对激光陀螺具有标度因数稳定、漂移误差变化小的特点,建立了适合激光陀螺捷联惯导系统的陀螺及加速度计组件简化误差参数模型,推导出了适合激光陀螺捷联惯导系统外场快速自标定的误差模型,设计了激光陀螺捷联惯导系统9位置系统级标定方法,并通过试验验证了该方法可快速准确的标定出加速度计组件的标度因数、安装误差、零偏及激光陀螺安装误差等15个主要参数,方法简单易行.
简介:针对传统无陀螺捷联惯导系统角速度求解复杂,解算效率低,惯性元件安装精度要求高等问题,提出一种新型的无陀螺捷联惯导导航方案,将8-UPS型并联式六维加速度传感器作为其惯性元件,直接测量出运载体的六维绝对加速度。基于矢量力学理论,推导了其惯导基本方程;通过数值积分运算来提取载体的线运动参量;运用空间几何理论建立姿态方程,实时更新捷联矩阵以获取载体的角运动参量,从而完成了导航建模与解算。仿真结果表明该系统能满足航行体中精度实时导航的要求,是有效可行的。与同类导航相比,该系统具有结构紧凑、解算效率高、物理模型误差敏感性低等优势。
简介:为提高车载捷联惯性导航系统(SINS)的定位和姿态精度,分析了SINS静态罗经对准原理,并推广至行进过程中,借助里程仪测速辅助实现姿态动态、持续对准。同时,通过此动态罗经回路控制律对里程仪测速噪声进行平滑,并对平滑后速度加以检测,实现了零速修正(ZVU)的停车自动识别;停车瞬间利用动态罗经对准回路对系统姿态进行修正,速度误差归零,并依据相邻停车时刻记录的速度误差拟合曲线积分值修正系统位置误差。最后,采用此方案进行了长达4h(约160km)的三组跑车实验,每10min停车ZVU(1s),达到的定位精度为44.2m(CEP),姿态精度优于0.5’。