学科分类
/ 1
4 个结果
  • 简介:基于状态空间模型的许多传统滤波算法都基于Rn空间中的高斯分布模型,但当状态向量中包含角变量或方向变量时,难以达到理想的效果。针对J.T.Horwood等提出的nS?R流形上的GaussVonMises(GVM)多变量概率密度分布,扩展了狄拉克混合逼近方法,给出了联合分布的GVM逼近方法,推导了后验分布的GVM参数计算公式,设计了量测更新状态估计算法。将J.T.Horwood等的时间更新算法与所提出的量测更新算法相结合,可实现基于GVM分布的递推贝叶斯滤波器(GVMF)。仿真结果表明,当状态向量符合GVM概率分布模型时,GVMF对角变量的估计明显优于传统的扩展卡尔曼滤波器。

  • 标签: GAUSS von Mises分布 狄拉克混合逼近 递推贝叶斯滤波 量测更新
  • 简介:传统的捷联惯性导航算法求解比力积分项采用了一阶近似方法,近似误差对高精度导航应用的影响是不可忽略的。为消除近似误差,提出了一种改进的捷联导航算法。在惯性坐标系中,将速分解为比力速与重力速两部分,求出了能够完全补偿动态误差的比力积分变换项解析表达式,在此基础上得到了比力速的精确解,并将其求解方法扩展应用于重力速,在不改变传统导航算法实现框架的前提下,设计了高精度的捷联惯性导航算法。改进导航算法的精度与对偶四元数导航算法一致,而其实时性却与传统导航算法相当,获得了整体性能上的优势。

  • 标签: 捷联惯导系统 比力地速 重力地速 比力积分项 动态误差
  • 简介:Unscented卡尔曼滤波(UKF)是一种新的非线性滤波算法,将其引入到GPS/DR系统的滤波中,并针对系统模型的特点对原UKF算法进行了简化,建立了新的滤波方法.仿真结果表明,同EKF相比,UKF的滤波精度和稳定性都显著提高了,还可避免计算烦琐的Jacobi矩阵,真正实现了低成本、高精度的导航定位要求.

  • 标签: 组合导航 UNSCENTED卡尔曼滤波 车载导航 JACOBI矩阵 定位精度