简介:为解决舰载主惯导与机载子惯导之间大失准角问题,同时满足对准快速性的需求,提出了从舰载机进入弹射位置开始,到舰载机飞离甲板时间内,基于虚拟惯导(VINS),综合利用舰载主惯导信息、跑道航向信息以及激光多普勒测速仪(LDV)信息,利用速度匹配方法实现舰/机惯导传递对准的方法,并建立了传递对准误差模型.该模型利用舰艇坐标系与跑道坐标系之间的方向余弦矩阵,将舰载坐标系与机载坐标系之间的大失准角问题,转化为机载坐标系与跑道坐标系之间的小方位失准角问题.考虑弹射过程舰艇及舰载机的运动模型,利用数学仿真对传递对准误差模型进行了验证,并与UKF滤波方法进行了对比.仿真结果表明,该方法可以在8s内实现舰/机惯导的传递对准,对准性能与UKF滤波方法相当,且对准过程不需要舰艇进行任何机动运动.
简介:捷联惯性导航系统静基座初始对准时一般先进行粗对准,使失准角缩小到一定范围内从而满足小失准角假设下的线性误差模型,然后再进行精对准。在不进行粗对准时失准角一般为大角度,需要采用复杂的非线性误差模型和非线性滤波方法。研究发现通过设置合理的误差协方差矩阵初值,采用反馈校正滤波结构,并引入强跟踪滤波算法可以在大失准角情况下既无需粗对准,又无需采用非线性模型来实现精对准。仿真结果表明,该方法可以实现大失准角初始对准,鲁棒性好,在任意姿态初值下都可以使航向角在300s内收敛到0.05°的理论极限精度,与小失准角精对准方法的速度和精度相当但省去了粗对准因而耗时更短,与无迹卡尔曼滤波在600s时才收敛到0.5°的速度相比大为改善。
简介:Schuler振荡阻尼技术是提高惯导长期工作精度的关键技术之一。针对采用低阶阻尼网络的惯导系统抑制高频和低频参考速度误差难以兼顾的问题,基于互补滤波思想,提出一种高阶水平阻尼网络设计方法。将两个采用低阶网络、分别具有优良高频和低频特性的Schuler回路通过一对互补滤波器进行组合,形成双Schuler回路组合系统。它等效于采用某高阶网络的单Schuler回路,该回路对高频和低频参考速度误差的衰减率可同时达到40dB/10deg或更高。计算机仿真和海上试验结果均表明:采用所设计高阶网络的系统对参考速度误差兼有优良的高频和低频滤波特性,综合滤波性能优于采用低阶阻尼网络的系统,具有工程应用价值。
简介:从模式识别的角度分析了搜索模式下水下运载体的重力匹配问题,利用模式识别神经网络实现重力匹配定位。在重力图匹配时,以惯性导航仪指示位置为中心规划真实位置的网格点搜索范围,从参考重力图上提取相应一系列的重力数据,与对应网格点的位置一起定义成多个模式类,构造相应的模式识别概率神经网络,运用该神经网络将实时重力测量数据识别到某个模式类,对比模式类的定义确定载体位置。在实测重力图上对重力辅助惯性导航系统进行了计算机仿真研究。结果表明,在重力场特征显著区域该重力匹配算法能够有效减小厄特弗斯效应的影响,其导航系统定位误差小于一个重力图网格,匹配率在80%以上,匹配效果优于一般的相关匹配算法。
简介:为了提高潜器导航定位精度,针对等值线算法在惯导系统初始误差较大时易发散的问题,提出基于概率神经网络调优的等值线改进方法。首先,在搜索区域内,利用概率神经网络算法对惯导系统航迹进行调优,并经过卡尔曼滤波器与惯导系统航迹进行信息融合形成待匹配航迹;在此基础上利用实时等值线算法得到最佳匹配位置。分别在不同初始条件下进行仿真分析,得出概率神经网络算法在大的初始误差下不易发散但定位精度不高的结论,然后在潜器行驶6h后,初始误差为5.438?的条件下进行仿真验证,结果表明,改进方法定位精度均值优于0.537?,从而证明改进方法是有效的,即使在大的初始误差下仍然能够达到较高的定位精度。
简介:开展了机器学习在翼型气动力计算和反设计方法中的应用研究,实现了在更大翼型空间范围内,人工神经网络的训练和优化,建立了翼型气动力计算模型,和给定目标压力分布的翼型反设计优化模型.作为机器学习领域兴起的研究热点,人工神经网络的研究工作不断深入,有研究者尝试将其应用于流体力学的学科范畴内.文章实现人工神经网络在翼型计算领域中应用的方法如下:首先通过Parsec参数化方法,围绕基准翼型构造了一定翼型空间范围的翼型库,利用XFOIL进行数值模拟,搭建了和翼型库具有一一映射关系的流场信息库.通过训练和优化神经网络,实现了基于此模型的快速、高可信度的翼型气动力预测,以及新型的翼型优化设计方法.通过自动化编程实现样本库的批量生成,实现了不同翼型空间的样本量下,神经网络的训练和优化过程.实验结果表明,在机器学习领域中,基于神经网络的翼型反设计模型的精确性高度依赖于训练样本量的大小和覆盖范围.
简介:针对系统误差的不确定性可能会引起滤波精度降低或发散的问题,提出一种新的基于模型预测滤波的前向神经网络算法。首先,采用模型预测滤波估计网络在正向传递过程中的模型误差,并对其进行修正,以弥补模型误差对隐含层权值更新的影响;然后,利用模型预测滤波为神经网络提供精确的训练样本,学习待估计系统的非线性关系。将提出的算法应用于SINS/CNS/BDS组合导航系统,并与扩展卡尔曼滤波进行比较,仿真结果表明,提出的算法得到的姿态误差、速度误差和位置误差分别在[-0.25′,+0.25′]、[-0.05m/s,+0.05m/s]和[-5m,+5m]以内,滤波性能明显优于扩展卡尔曼滤波算法,表明该算法能提高组合导航定位的解算精度。
简介:在详细分析光纤陀螺零漂的基础上,提出了先用滤波算法对光纤陀螺信号进行预处理,然后采用RBF神经网络对滤波后的信号进行建模的方法.针对光纤陀螺信号特点分别采用FLP算法、小波滤波算法、解相关变步长LMS自适应滤波算法对其进行了预处理,比较三种滤波方法,小波滤波算法效果优于其它两种预处理方法,但针对基于预处理后的陀螺信号采用RBF神经网络进行建模时,小波滤波预处理后的信号在建模精度上却是最差的,而对FLP算法滤波后的信号进行RBF建模,建模精度提高了两个数量级。结果表明:基于FLP算法的RBF神经网络在光纤陀螺中的建模是有效的,可大大提高建模的精度。