简介:针对环形谐振陀螺谐振结构特性参数相同、检测灵敏度高、温度与抗干扰特性好等特点,提出了一种新颖的S形挠曲支撑梁的电容式环形谐振陀螺。其环形谐振子的刚度系数、固有频率等振动特性参数是陀螺结构优化、模态控制、驱动与检测电路设计的主要理论参数。为了得到该陀螺精确的谐振子特性参数,基于角度敏感原理、谐振结构的材料力学性能与机械振动特性,推导了谐振结构的等效刚度系数与固有频率的理论模型,并且分别进行了有限元仿真分析与样机频率特性测试。结果表明该理论模型计算的固有频率与有限元分析的误差为7.0820%,与样机实际测试的误差为3.9035%,证明了理论模型的正确性,为该陀螺的进一步研究提供了理论依据。
简介:针对Kalman滤波器在捷联惯导系统(SINS)初始对准中的应用,系统分析了Kalman滤波器参数(包括估计误差协方差阵初值P0,模型噪声方差阵Q和量测噪声方差阵R)选取对系统状态变量的估计精度和收敛速度的影响。采用协方差性能分析法,进行了Kalman滤波器参数优化仿真,仿真结果表明:调整扁的取值可改变状态变量估计的收敛速度,调整Q或R的取值,既可改变状态变量(尤其是陀螺误差)的收敛速度又可改变它们的估计精度。综合考虑时,局的取值要比真实值大一些,Q和R的取值要比真实值小一些,这样既可缩短陀螺误差和加速度计偏置误差的估计时间,又可提高它们的估计精度。文中还给出了使滤波器正常可靠工作的P0、Q和R参数的范围。
简介:在飞行器的气动外形优化设计中,参数化方法和优化算法具有十分重要的作用,对优化的计算时间、设计空间的数学特性有着深刻的影响.类别形状函数(classandshapetransformation,CST)方法是一种简洁高效的参数化方法,但对于复杂曲面很难使用统一的CST方法进行拟合.文章首先介绍了CST方法的三维实现,分析了其数学性质,提出了分块CST参数化方法,保留CST方法的特性,实现了分块曲面之间的光滑连接.针对气动外形优化设计的复杂情况,需要根据具体的飞行任务提出设计目标,并处理不同目标的矛盾问题.其次采用Pareto策略自动寻找最优方案集,并基于分块CST参数化方法、遗传算法和气动力快速计算方法,对类乘波翼身组合飞行器进行了优化设计,并改变原有问题的设定条件优化得到了全新外形.研究结果表明分块CST方法参数少,精度高,Pareto策略处理多目标准确有效,是气动外形优化设计中非常有用的工具.
简介:从理论上推导了声学超表面对平面声波的作用模型,该理论模型计及声波高阶衍射模态,从而能够计及超表面微结构之间的声学干扰.通过与数值结果对比,该模型预测的反射频率精度得到了一定程度的提高,并能够分辨出相邻孔声场之间的耦合模态.讨论了声学超表面吸声特性与阻抗特性对高超声速边界层内Mack第2模态的抑制机理,研究发现通过设计超表面阻抗特性,使得入射声波与反射声波在壁面处相位相反,同样可以抑制Mack第2模态.基于理论模型,分别优化设计得到最优的微结构几何尺寸,并通过对Mach6平板边界层流动进行稳定性分析,验证了超表面不同声学特性的抑制效果.
简介:开展了机器学习在翼型气动力计算和反设计方法中的应用研究,实现了在更大翼型空间范围内,人工神经网络的训练和优化,建立了翼型气动力计算模型,和给定目标压力分布的翼型反设计优化模型.作为机器学习领域兴起的研究热点,人工神经网络的研究工作不断深入,有研究者尝试将其应用于流体力学的学科范畴内.文章实现人工神经网络在翼型计算领域中应用的方法如下:首先通过Parsec参数化方法,围绕基准翼型构造了一定翼型空间范围的翼型库,利用XFOIL进行数值模拟,搭建了和翼型库具有一一映射关系的流场信息库.通过训练和优化神经网络,实现了基于此模型的快速、高可信度的翼型气动力预测,以及新型的翼型优化设计方法.通过自动化编程实现样本库的批量生成,实现了不同翼型空间的样本量下,神经网络的训练和优化过程.实验结果表明,在机器学习领域中,基于神经网络的翼型反设计模型的精确性高度依赖于训练样本量的大小和覆盖范围.
简介:舰载机进行紧急作战任务时,可能会先快速起飞,然后再进行空中对准。为了保证对准结束进入惯性导航模式后,惯导系统能够达到一定精度指标,对准结束时刻的姿态信息需要达到一定的精度要求。空中对准过程一般可分为粗对准和精对准两部分,对准结束时刻的姿态精度由粗对准结束时刻的导航误差、惯性器件误差、重力场模型误差和对准过程中的飞行机动等多个因素决定。首先利用设计的协方差分析方法,对两种不同空中对准方案进行误差分配,并通过Monte-Carlo仿真技术对误差分配结果进行了验证。仿真结果说明了提出的误差分析方法是正确的,为空中对准方案的改进方向提供了借鉴作用。
简介:针对亚轨道可重复使用运载器(SRLV)的应用需求,在将卫星投送到预定轨道同时确保SRLV安全返回的前提下,对基于记忆原理的轨迹/总体参数一体化优化方法进行了研究。记忆优化算法是一种具有全局收敛性的随机搜索方法,每次搜索的试探解优劣状态由记忆元来存储。利用记忆原理的记忆增强和遗忘规律来衡量优化搜索过程中试探解的状态,并以燃料最省作为优化指标。同时采用三种不同的搜索策略,实现对试探解的随机搜索,避免陷入局部极小问题,并以此来提高搜索速度。仿真表明:卫星入轨速度偏差小于2m/s,高度偏差小于10m,轨道倾角偏差小于0.0001°。SRLV最终与着陆场的位置偏差小于100m,速度偏差小于5m/s。相较于传统的轨迹优化方法,新方法适用于复杂的轨迹/参数一体化优化问题,搜索速度快,求解精度高,有利于算法在工程实际中的应用与推广。
简介:使用高阶间断Galerkin(discontinuousGalerkin,DG)方法求解双曲守恒律方程组时,非物理效应常常导致计算过程的中断,这在很大程度上制约着该方法在计算流体力学中的应用.文章结合局部单元上原始流动变量的Taylor展开,设计了一种新型的限制器,通过对各阶空间导数的重构,有效地消除了非物理振荡的不利影响.对二维Euler方程的计算结果表明,该限制器不仅能够捕捉高质量的激波,而且能够保证残值的有效收敛.
简介:提出了一种高性能氮化铝(AlN)差分谐振式加速度计结构。通过引入两级微杠杆来放大质量块的惯性力,提高灵敏度;采用"I"形支撑梁来降低横向灵敏度;利用差频检测方案降低温度共模误差的影响。该加速度计主要由质量块、支撑梁、双级微杠杆和谐振器组成,并通过理论分析和有限元仿真优化了它们的结构参数。模态分析表明两个谐振器的基频大约为373.3kHz,与干扰模态的频率差大约为9.4kHz,有效地实现了模态隔离。根据灵敏度的仿真结果,AlN差分谐振式加速度计的灵敏度64.6Hz/g,线性度为0.787%,横向灵敏度为0.0033Hz/g。热仿真的结果表明单个谐振器的温度灵敏度约为490Hz/℃,加速度计输出差频的温度灵敏度为–0.83Hz/℃,证明了差频检测方案可以降低温度共模误差的影响。上述所有仿真结果验证了该加速度计结构设计的可行性。