简介:受欺骗的卫星导航信息与惯导系统组合滤波,会导致错误的惯性器件误差修正量,最终组合导航系统也会被欺骗干扰影响。针对这一问题,提出了一种基于MEDLL算法的改进的GNSS/INS组合导航模式,能够实现欺骗信号的辨识和抑制,保证组合导航信息的可靠性。GNSS接收机通过MEDLL算法同时估计接收的全部卫星信号参数,当欺骗干扰存在时,MEDLL算法可同时估计出两路信号参数,并判定欺骗干扰存在;MEDLL估计的信号参数生成两组输出伪距信息与惯导系统定位信息提供的参考伪距进行比较,实现欺骗信号的辨识。在200次实验测试中,对于牵引速率大于2m/s的牵引式欺骗信号,4s内成功辨识的次数为200次。同时,与传统的GNSS/INS组合导航系统相比,提出的MEDLL辅助的组合导航模式能够有效减小欺骗信号的影响,定位结果稳定在真实位置附近。
简介:立方星的姿态测量与控制系统常采用磁测磁控结合偏置动量轮的方案,整星剩磁干扰力矩是影响姿态控制精度的重要因素之一。提出了一种利用磁强计实现剩磁矩在轨辨识与利用磁力矩器实现剩磁矩主动补偿的新方案:基于磁强计输出和卫星姿态动力学建立了剩磁矩在轨辨识模型,并利用采样滤波器(UKF)提高单磁强计条件下的辨识效果;把控制对象简化成线性定常系统,分析了剩磁干扰力矩对姿态的影响数学模型,并针对磁力矩器和磁强计分时工作的特点,基于叠加性原理提出了基于角速度的剩磁矩主动补偿算法。仿真研究表明,在1000s内剩磁矩在轨辨识精度为0.001A×m~2量级,主动补偿后,偏航角、滚动角与俯仰角控制误差分别从4.3°、4.6°与2.1°均减少至0.4°以内。提出的方法为类似配置卫星减少剩磁干扰力矩的影响提供了一种新思路。
简介:针对当前行人运动特征监测方案中存在运动信息种类单一、特征提取不完善、识别算法复杂且需要依赖专业检测设备等问题,提出基于智能移动端内置惯性传感器的行人运动特征自动辨识方案,为运动特征识别提供准确多样的运动信息。采集移动端MEMS加速度计输出信息后,分别提取加速度数据的三种时域及频域特征后,通过训练最邻近规则分类器实现行人行走、跑步和上下楼梯运动模式的自动识别。不同年龄不同身高的男女性运动特征提取实验结果表明,基于最邻近规则的移动端行人运动特征辨识方法对4种日常活动的平均查准率和查全率分别达到88.7%和90.3%,对提高微惯性行人导航系统普适性具有促进作用。
简介:针对传统基于g信息的粗对准的捷联惯导系统中,受传感器噪声的影响,存在效视运动无法提取和双向量共线的缺点,提出了一种基于改良Kalman滤波的参数辨识粗对准方法。该方法通过构建视在重力在初始载体系中的映射模型,利用改良Kalman滤波进行模型参数辨识,然后通过识别参数重新构建视在重力在初始载体系中的映射,解决了由于传感器噪声导致有效视运动无法正常提取的缺点。利用识别参数具有随估计次数增多得到优化的特点,构造初始时刻和最终时刻向量,避免双向量共线问题。利用改良Kalman滤波算法的自适应特点,优化参数识别精度与速度。转台实验表明,采用改良Kalman滤波方法航向对准精度为-0.0414°,标准差为0.041°,而传统RLS方法得到的航向精度为-0.0738°,标准差为0.128°。由此可知,本文提出的方法性能更优。
简介:在原有研究的基础上,针对实验数据观测点疏密分布均匀或不均匀的工程实际情况,分别运用全局准则和局部准则,研究最小概率DWO非线性辨识方法中的带宽选择关键问题,提出了校正AIC准则和LCV准则两种不同的带宽选择方法,并将这些方法应用于四频差动激光陀螺的温度误差模型辨识中,比较和验证了这些方法的正确性和适应性。研究结果表明:①对于"分布均匀"的情况,宜采用校正AIC准则;②对于"分布不均匀"的情况,宜采用LCV准则;③形成了自动带宽选择算法。总之,这些方法为解决"带宽选择"问题提供了有效途径,从而进一步提高了最小概率DWO方法的工程应用价值。
简介:推导了线振动微机械陀螺的三自由度误差力学方程,并详细分析了陀螺耦合误差的产生机理。分析结果表明,各种结构误差是导致陀螺耦合误差信号的主要原因。在此基础上,利用振动和模态理论给出了陀螺结构误差参数的分离和辨识的试验方法和结果。试验结果表明,同相耦合分量和正交耦合分量是微机械陀螺的两种主要误差信号,造成正交耦合的主要原因是驱动轴和检测轴之间的刚度耦合以及驱动轴和检测轴各自的刚度不对称,造成同相耦合的主要原因是驱动轴和检测轴之间的阻尼耦合以及检测轴刚度不对称和驱动力不对称。结构误差参数的分离和辨识试验方法将为下一步的陀螺结构优化、微加工工艺改进以及耦合误差抑制提供基础。
简介:为减小温度对导航精度的影响,实现系统级的温度补偿,在实验中采用静态条件下的标定方法;基于激光陀螺捷联惯性系统的误差模型方程,用广义逆算法顺利分离求得陀螺各零偏及标度因数值;根据以往温度误差模型的结构特点,运用渐近辨识方法(ASYM)中的最终输出误差准则(FOE)对温度误差模型中非线性部分的阶次进行准确的计算,确定了合理的温度误差模型结构。为了解决用最小二乘法辨识模型结构的系数时,信息矩阵求逆容易溢出的问题,采用了自适应的岭估计算法确定陀螺零偏温度误差模型的系数,实现了系统级的温度误差建模。所得到的温度误差模型补偿效果比定阶前明显提高。
简介:利用单频GPS载波相位差分技术进行动态精密测量时,由于观测历元少,经典LAMBDA算法会出现法矩阵病态导致整周模糊度无法求解。针对这一问题研究了基于TIKHONOV正则化原理的改进LAMBDA算法。通过对双差观测方程系数矩阵进行奇异值分解选取正则化矩阵,改善了法矩阵的病态性,获得了更高精度的浮点解。利用均方误差矩阵替代协方差阵进行LAMBDA求解,提高了模糊度求解的速度和成功率。对连续100组5个历元实测数据计算表明:与原算法相比,改进LAMBDA算法求得的浮点模糊度偏差从36.48周减小到4.08周,搜索效率和成功率分别改进97.74%和100%。