简介:传统的语音识别方法,信噪比较低时识别率也较低。为了使语音识别更具有环境适应性、抗噪性,从非齐次隐马尔可夫模型(nonhomogeneousHiddenMarkovModel,HMM)出发,结合自适应函数链神经元网络,训练出适应环境变化的混合语音模型,并采用该混合模型进行语音识别。实验结果表明,该模型适用于含噪语音的识别,特别是在低信噪情况下,可以相对提高识别率。
简介:介绍了超分辨率复原方法的概念和理论基础;重点总结了常用的超分辨率复原方法,并对相关的理论依据、优缺点和适用范围进行了详尽分析;对超分辨率复原方法的未来发展进行了展望。超分辨率复原方法分为频域法和空域法。频域复原法原理简单清楚,计算方便,但是所建立的运动模型都是平移模型,不具有一般性,同时难以利用正则化约束,因而导致难以使用图像的先验信息进行超分辨率复原。空域复原法可以很方便地建立复杂的运动模型,同时考虑了几乎所有的图像降质因素,例如噪声、降采样、由非零孔径时间造成的模糊、光学系统降质和运动模糊等,还可以加入更完善的先验知识,相比于频域复原法,空域超分辨率复原模型更符合实际的图像退化过程,是目前应用最广泛的一类超分辨率复原方法。