简介:Inthispaperamodeloftransvcrsalfilterispresentedtostudytheadaptivematchofthetimevariantchannel.Theleastmeansquareerrorfil-teringmethodisusedtoobtaintheweightingcoeffcientsofthefilter.Withthepurposeofspeedinguptheconvergenceoftheiterationequationofadaptivefiltering,anadaptivefactoroftheiterationstepsizeμ_aisderivedinthispaper.Theresultofcomputersimulationshowsthatinthecaseofusingadaptiveμ_a,theconvergencespeedoftheiterationequationisincreased2timesapproximatelyincomparisonwithconstantμ_f.Thestudysuggeststhattheadaptivefilterwithadaptiveμ_a.havetheperformancetofollowthechangeoftime-variantcharacteristicsofthechannel.
简介:
简介:Responseofadaptivematchedfilter,alsocalledadaptivecorrelator,tomultipathchannelisdiscussedinthispaper.Ithasbeenprovedthatthenewtypeprocessorcanbettermatchwithmultipathchan-nel.Theresultsofexperimentcarriedoutonlakeandinlaboratoryarepresented.Itshowsthattheprocessorhasgooddetectingperformanceintimedomain.
简介:Thispaperdescribestheinverstigationdevotedtoestablishsuitableweightsinafeed-forwardneuralnetworkrealizingthenarrow-bandfilteringmapinthecaseofadaptivelineenhancement(ALE)bytheutilityoftheoptimumcommonlearningratebackpropagation(OCLRBP)algorithm.Itisfoundthatafeed-forwardnetworkwith64linearinputandoutputneurons,and8oddsigmoidneuronsinthehiddenlayer,i.e.an(64→8→64)architecture,couldestablishthespecificinput-outputfunctioninthecaseofrelativelylowsignal-to-noiseradio.Onlyisaninputsignalconsistingofmixedperiodicandbroad-bandcomponentsavailabletothenetworksystem.Afterlearning,boththe"fanning-in-connectionpatterns",eachofwhichconsistsofweightsfanningintoahidden-neuronFromalltheoutputsofinput-neurons,andthe"fanning-out-connectionpatterns",eachofwhichconsistsofweightsfanningoutfromahidden-neurontoalltheinputsofoutput-neurons,aretunedtotheperiodicsignals.Thenonline
简介:
简介:
简介:Considertheproblemsoffrequency-invariantbeampatternoptimizationandrobustnessinbroadbandbeamforming.Firstly,aglobaloptimizationalgorithm,whichisbasedonphasecompensationofthearraymanifolds,isusedtoconstructthefrequency-invariantbeampattern.Comparedwithsomemethodspresentedrecently,theproposedalgorithmisnotonlyavailabletogettheglobaloptimalsolution,butalsosimpleforphysicalrealization.Meanwhile,arobustadaptivebroadbandbeamformingalgorithmisalsoderivedbyreconstructingthecovariancematrix.Theessenceoftheproposedalgorithmistoestimatethespace-frequencyspectrumusingCaponestimatorfirstly,thenintegrateoveraregionseparatedfromthedesiredsignaldirectiontoreconstructtheinterference-plus-noisecovariancematrix,andfinallycaleulatetheadaptivebeamformerweightswiththereconstructedmatrix.Thedesignofbeamformerisformulatedasaconvexoptimizationproblemtobesolved.Simulationresultsshowthattheperformanceoftheproposedalgorithmisalmostalwaysclosetotheoptimalvalueacrossawiderangeofsignaltonoiseratios.
简介:人的那个听觉的系统有自动语音识别ASR系统斜面火柴,和部分Fourier变换FrFT在非静止的信号处理有唯一的优点的优秀性能,是众所周知的。在这份报纸,Gammatonefilterbank为前端被用于讲话信号时间的过滤,然后产量subband信号的声学的特征基于部分Fourier被提取变换。就为FrFT的变换顺序的批评效果而言,一个顺序改编方法基于即时频率被建议,并且它的表演基于歧义功能与方法相比。ASR实验在干净、吵闹的Putonghua位上被进行,并且结果证明建议特征基于即时频率比MFCC基线,和顺序改编方法完成显著地更高的识别率基于歧义比那有低得多的复杂性函数。进一步更,基于FrFT的特征用建议顺序改编方法完成最高的识别率。