简介:Anewadaptivetechniqueofr-andh-versionforvibrationproblemsutilizingthematrixper-turbationtheoryandelementenergyratioisproposed.Instructuralvibrationanalysis,throughther-conver-genceadaptivefiniteelementprocess,meshoptimizationcanberealized.Inthelightofthejudgementonthechangesinthemagnitudeoftheelementenergyratio,localrefinementcanbeachievedintheprocessofh-convergenceadaptivefiniteelementsothatmoreaccuratefiniteelementsolutionscanbeobtainedwithasfewmeshesaspossible.Manynumericalexamplesaregivenandtheproposedapproachisshowntobefeasibleandeffective.
简介:Itisconcernedwiththeproblemofdisturbanceattenuationwithstabilityforuncertainnonlinearsystemsbyadaptiveoutputfeedback.Byapartial-stateobserverandBacksteppingtechnique,anadaptiveoutputfeedbackcontrollerwasconstructed,whichcansolvethestandardgaindisturbanceattenuationproblemwithinternalstability.
简介:ThispaperproposesanadaptivejointsourceandchannelcodingschemeforH.264videomulticastoverwirelessLANwhichtakesintoaccounttheusertopologychangesandvaryingchannelconditionsofmultipleusers,anddynamicallyallocatesavailablebandwidthbetweensourcecodingandchannelcoding,withthegoaltooptimizetheoverallsystemperformance.Inparticular,sourceresilienceanderrorcorrectionareconsideredjointlyintheschemetoachievetheoptimalperformance.Andachannelestimationalgorithmbasedontheaveragepacketlossrateandthevarianceofpacketlossrateisproposedalso.Twooverallperformancecriteriaforvideomulticastareinvestigatedandexperimentalresultsarepresentedtoshowtheimprovementobtainedbythescheme.
简介:Inthispaperamodeloftransvcrsalfilterispresentedtostudytheadaptivematchofthetimevariantchannel.Theleastmeansquareerrorfil-teringmethodisusedtoobtaintheweightingcoeffcientsofthefilter.Withthepurposeofspeedinguptheconvergenceoftheiterationequationofadaptivefiltering,anadaptivefactoroftheiterationstepsizeμ_aisderivedinthispaper.Theresultofcomputersimulationshowsthatinthecaseofusingadaptiveμ_a,theconvergencespeedoftheiterationequationisincreased2timesapproximatelyincomparisonwithconstantμ_f.Thestudysuggeststhattheadaptivefilterwithadaptiveμ_a.havetheperformancetofollowthechangeoftime-variantcharacteristicsofthechannel.
简介:Anadaptivealgorithmforsolvinglargenonsymmetriclinearsystemsispresentedinthispaper.ThenewalgorithmcombinespolynomialpreconditioningtechniquewiththeCGNRmethod.Residualpolynomialisusedinthepreconditioningtoestimatetheeigenvaluesofthes.p.d.matrixArA,andtheresidualpolynomialisgeneratedfromseveralstepsofCGNRbyrecurrence.Thealgorithmisadaptiveduringitsimplementation.Therobustnessismaintained,andtheiterationconvergenceisspeededup.Twonumericaltestresultsarealsoreported.
简介:ThisarticledescribesalocalerrorestimatorforGlimm'sschemeforhyperbolicsystemsofconservationlawsandusesittoreplacetheusualrandomchoiceinGlimm'sschemebyanoptimalchoice.Asaby-productofthelocalerrorestimator,theprocedureprovidesaglobalerrorestimatorthatisshownnumericallytobeaveryaccurateestimateoftheerrorinL1(R)foralltimes.Althoughthereispartialmathematicalevidencefortheerrorestimatorproposed,atthisstagetheerrorestimatormustbeconsideredad-hoc.Nonetheless,theerrorestimatorissimpletocompute,relativelyinexpensive,withoutadjustableparametersandatleastasaccurateasotherexistingerrorestimators.Numericalexperimentsin1-DforBurgers'equationandforEuler'ssystemareperformedtomeasuretheasymptoticaccuracyoftheresultingschemeandoftheerrorestimator.
简介:
简介:Responseofadaptivematchedfilter,alsocalledadaptivecorrelator,tomultipathchannelisdiscussedinthispaper.Ithasbeenprovedthatthenewtypeprocessorcanbettermatchwithmultipathchan-nel.Theresultsofexperimentcarriedoutonlakeandinlaboratoryarepresented.Itshowsthattheprocessorhasgooddetectingperformanceintimedomain.
简介:Thispaperdescribestheinverstigationdevotedtoestablishsuitableweightsinafeed-forwardneuralnetworkrealizingthenarrow-bandfilteringmapinthecaseofadaptivelineenhancement(ALE)bytheutilityoftheoptimumcommonlearningratebackpropagation(OCLRBP)algorithm.Itisfoundthatafeed-forwardnetworkwith64linearinputandoutputneurons,and8oddsigmoidneuronsinthehiddenlayer,i.e.an(64→8→64)architecture,couldestablishthespecificinput-outputfunctioninthecaseofrelativelylowsignal-to-noiseradio.Onlyisaninputsignalconsistingofmixedperiodicandbroad-bandcomponentsavailabletothenetworksystem.Afterlearning,boththe"fanning-in-connectionpatterns",eachofwhichconsistsofweightsfanningintoahidden-neuronFromalltheoutputsofinput-neurons,andthe"fanning-out-connectionpatterns",eachofwhichconsistsofweightsfanningoutfromahidden-neurontoalltheinputsofoutput-neurons,aretunedtotheperiodicsignals.Thenonline
简介:这份报纸涉及一口跳入的液体喷气的三维的数字模拟。在喷气附近形成一个空气洞的短暂过程,捕获这个大塑造toroidal的水泡的一个开始大的空气水泡,和分散进更小的水泡被分析。一个稳定的有限元素方法(女性)基于适应、未组织的格子在平行数字模拟下面被采用并且结合了一个水平集合方法追踪在空气和液体之间的接口。这些模拟证明液体喷气的惯性开始压抑水池的表面,形成包围液体喷气的一个环形的空气洞。随后在液体水池被形成的一个toroidal液体旋涡导致空气洞倒塌,并且接着乘火车空气进从在液体喷气附近的不稳定的环形的空气差距区域的液体水池。
简介:Thispaperpresentanimprovedpreciseintegrationalgorithmfortransientanalysisofheattransferandsomeotherproblems.Theoriginalpreciseintegrationmethodisimprovedbymeanoftheinve-rseaccuracyanalysissothattheparameterN,whichhasbeentakenasaconstantandanindependentpa-rameterwithoutconsiderationoftheproblemsintheoriginalmethod,canbegeneratedautomaticallybythealgorithmitself.Thus,theimprovdealgorithmisadaptiveandtheaccucacyofthealgorithmisnotdependentonthelengthofthetimestepintheintegrationprocess.Itisshownthatthenumericalresultsobtainedbythemethodproposedaremoreaccuratethanthoseobtainedbytheconventionaltimeintegrationmethodssuchasthedifferencemethodandothers.Fourexamplesaregiventodemonstratethevalidity,accuracyandeffi-ciencyofthenewmethod.
简介:
简介:Stochasticapproximationproblemistofindsomerootorextremumofanon-linearfunctionforwhichonlynoisymeasurementsofthefunctionareavailable.TheclassicalalgorithmforstochasticapproximationproblemistheRobbins-Monro(RM)algorithm,whichusesthenoisyevaluationofthenegativegradientdirectionastheiterativedirection.InordertoacceleratetheRMalgorithm,thispapergivesaflamealgorithmusingadaptiveiterativedirections.Ateachiteration,thenewalgorithmgoestowardseitherthenoisyevaluationofthenegativegradientdirectionorsomeotherdirectionsundersomeswitchcriterions.Twofeasiblechoicesofthecriterionsarepro-posedandtwocorrespondingflamealgorithmsareformed.Differentchoicesofthedirectionsunderthesamegivenswitchcriterionintheflamecanalsoformdifferentalgorithms.Wealsoproposedthesimultanousperturbationdifferenceformsforthetwoflamealgorithms.Thealmostsurelyconvergenceofthenewalgorithmsareallestablished.Thenumericalexperimentsshowthatthenewalgorithmsarepromising.
简介:设计者被要求计划让未来扩大估计格子的未来利用。有效建模和预报技术,它将高效地使用信息在可用数据,可用资料包含了的这个工具,被要求,以便重要数据性质能被提取并且投射进未来。这研究基于划分算法(MMPA)的多模型建议一个适应方法,为短期的电负担用真实数据预报。格子的利用开始用趋于增加的季节的ARIMA被建模(汽车回归的综合移动平均数)模型。建议方法经过数据使用听说并且当模特儿正常周期的行为电的格子。任何一个ARMA(汽车回归的移动平均数)或州空间的模型能被用于当模特儿的负担模式。象可以出现在夏天或意外差错(停电)期间的意外山峰那样的负担异例也被建模。如果负担模式不匹配负担的正常行为,一个异例被检测,而且,当模式匹配异例的一个已知的盒子时,异例的类型被识别。真实数据被使用,真实盒子基于测量被测试大量希腊公共力量合作S.A,雅典,希腊。过滤算法的应用适应多模型成功地识别正常周期的行为和电的格子的任何不平常的活动。建议方法的表演也与由ARIMA模型生产了那相比。
简介:Awoofer–tweeteradaptiveopticalstructuredilluminationmicroscope(AOSIM)ispresented.Bycombiningalow-spatial-frequencylarge-strokedeformablemirror(woofer)withahigh-spatial-frequencylow-strokedeformablemirror(tweeter),weareabletoremovebothlarge-amplitudeandhigh-orderaberrations.Inaddition,usingthestructuredilluminationmethod,ascomparedtowidefieldmicroscopy,theAOSIMcanaccomplishhighresolutionimagingandpossessesbettersectioningcapability.TheAOSIMwastestedbycorrectingalargeaberrationfromatriallensintheconjugateplaneofthemicroscopeobjectiveaperture.TheexperimentalresultsshowthattheAOSIMhasapointspreadfunctionwithanFWHMthatis140nmwide(usingawaterimmersionobjectivelenswithNA=1.1)aftercorrectingalargeaberration(5.9μmpeak-to-valleywavefronterrorwith2.05μmRMSaberration).Afterstructuredlightilluminationisapplied,theresultsshowthatweareabletoresolvetwobeadsthatareseparatedby145nm,1.62×belowthediffractionlimitof235nm.Furthermore,wedemonstratetheapplicationoftheAOSIMinthefieldofbioimaging.Thesampleunderinvestigationwasagreen-fluorescentprotein-labeledDrosophilaembryo.Theaberrationsfromtherefractiveindexmismatchbetweenthemicroscopeobjective,theimmersionfluid,thecoverslip,andthesampleitselfarewellcorrected.UsingAOSIMwewereabletoincreasetheSNRforourDrosophilaembryosampleby5×.
简介:Totacklemulticollinearityorill-conditioneddesignmatricesinlinearmodels,adaptivebiasedestimatorssuchasthetime-honoredSteinestimator,theridgeandtheprincipalcomponentestimatorshavebeenstudiedintensively.Tostudywhenabiasedestimatoruniformlyoutperformstheleastsquaresestimator,somesufficientconditionsareproposedintheliterature.Inthispaper,weproposeaunifiedframeworktoformulateaclassofadaptivebiasedestimators.Thisclassincludesallexistingbiasedestimatorsandsomenewones.Asufficientconditionforoutperformingtheleastsquaresestimatorisproposed.Intermsofselectingparametersinthecondition,wecanobtainalldouble-typeconditionsintheliterature.
简介:Forthepurposeofachievinghigh-resolutionoptimalsolutionsthispaperproposesanodaldesignvariablebasedadaptivemethodfortopologyoptimizationofcontinuumstructures.Theanalysismesh-independentdensityfield,interpolatedbythenodaldesignvariablesatagivensetofdensitypoints,isadaptivelyrefined/coarsenedaccordingtoacriterionregardingthegray-scalemeasureoflocalregions.Newdensitypointsareaddedintothegrayregionsandredundantonesareremovedfromtheregionsoccupiedbypurelysolid/voidphasesfordecreasingthenumberofdesignvariables.Apenalizationfactoradaptivitytechniqueisemployedtopreventprematureconvergenceoftheoptimizationiterations.Suchanadaptiveschemenotonlyimprovesthestructuralboundarydescriptionquality,butalsoallowsforsufficientfurthertopologicalevolutionofthestructurallayoutinhigheradaptivitylevelsandthusessentiallyenableshigh-resolutionsolutions.Moreover,comparedwiththecasewithuniformlyandfinelydistributeddensitypoints,theproposedadaptivemethodcanachieveahighernumericalefficiencyoftheoptimizationprocess.
简介:Membranealgorithms(MAs),whichinheritfromPsystems,constituteanewparallelanddistributeframeworkforapproximatecomputation.Inthepaper,amembranealgorithmisproposedwiththeimprovementthattheinvolvedparameterscanbeadaptivelychosen.Inthealgorithm,somemembranescanevolvedynamicallyduringthecomputingprocesstospecifythevaluesoftherequestedparameters.Thenewalgorithmistestedonawell-knowncombinatorialoptimizationproblem,thetravellingsalesmanproblem.Theempiricalevidencesuggeststhattheproposedapproachisefficientandreliablewhendealingwith11benchmarkinstances,particularlyobtainingthebestoftheknownsolutionsineightinstances.Comparedwiththegeneticalgorithm,simulatedannealingalgorithm,neuralnetworkandafine-tunednon-adaptivemembranealgorithm,ouralgorithmperformsbetterthanthem.Inpractice,todesigntheairlinenetworkthatminimizethetotalroutingcostontheCABdatawithtwenty-fiveUScities,wecanquicklyobtainhighqualitysolutionsusingouralgorithm.