简介:摘要 : 针对温室番茄智能化管理需要,研究茎秆、叶片和绿果等 3类相近色目标的多波段图像融合方法,以凸显目标与背景亮度差异,提高目标视觉识别效率。根据其各自在 300~1000 nm范围的反射光谱特征差异,建立了针对其光谱数据分类的 Lasso正则化逻辑回归模型。基于模型的稀疏解特征,确定具有较大权值系数的 450、 600和 900 nm等 3个波段作为最优成像波段,在此基础上构建了温室番茄植株多波段图像在线采集系统。结合最优成像波段下相近色目标图像特征分析,提出了基于 NSGA-II的多波段图像加权融合方法,以增强特定目标与近色背景物体的图像亮度差异。最后通过现场试验对多波段图像融合效果进行评估。结果表明,分别以茎秆、叶片和绿果器官作为识别目标,通过多波段图像融合处理后,目标与背景之间的图像灰度差异绝对差值相应达到单波段图像的 2.02、 8.63和 7.89倍,即被识别目标与其他近色背景的亮度差异显著增强,且背景物的亮度波动得到抑制。本研究结果可以为农业环境近色目标视觉识别相关研究提供参考。
简介:[目的/意义]冷链配送碳排放动态预测是企业碳排放精准评估及其绿色信用等级评定的重要依据.本研究面向车辆碳排放受路况信息、行驶特征、制冷参数等多因素影响,提出一种融合多源信息的冷藏车辆碳排放动态预测模型.[方法]基于道路车辆数量与像素面积占比表征路况信息,构建基于改进YOLOv8s的路况信息识别模型,并以路况信息、行驶特征(速度、加速度)、货物重量、制冷参数(温度、功率)等为输入,构建基于改进iTransformer的冷藏车辆碳排放动态预测模型.最后与其他模型展开对比分析,分别验证路况信息识别与车辆碳排放动态预测的精度.[结果]改进的YOLOv8s路况信息识别模型在精确率、召回率和平均识别精度上分别达到98.1%、95.5%和 98.4%,比YOLOv8s分别提高了 1.2%、3.7%和 0.2%,参数量和运算量分别减少了 12.5%和31.4%,检测速度提高了5.4%.改进的iTransformer...
简介:[目的/意义]智慧农业科技是农业领域又一次新技术革命,具备农业新质生产力"高科技、高效能、高质量、可持续"的内在特征,已成为推进农业新质生产力发展的重要内核与引擎.[进展]本文对智慧农业科技创新的现实基础、内在逻辑与问题挑战开展系统研究,结论表明中国"表型+基因型+环境型"智能育种已迈入快车道,农业天、空、地信息感知技术体系逐渐成熟,农业大数据与智能决策技术研究探索不断推进,面向不同领域的智能农机装备创制取得丰硕成果.智慧农业科技创新通过赋能农业要素、技术、场景、主体与价值,推动农业新质生产力发展.但也面临科技创新政策体系不健全、关键技术存在卡点堵点断点、科创成果转化落地难度较大、支撑体系不够完备等重大挑战.[结论/展望]聚焦问题导向,提出了中国智慧农业科技创新平台、技术、场景、人才的"四高"路径,并围绕顶层设计、政策供...
简介:[目的/意义]奶牛跛行检测是规模化奶牛养殖过程中亟待解决的重要问题,现有方法的检测视角主要以侧视为主.然而,侧视视角存在着难以消除的遮挡问题.本研究主要解决侧视视角下存在的遮挡问题.[方法]提出一种基于时空流特征融合的俯视视角下奶牛跛行检测方法.首先,通过分析深度视频流中跛行奶牛在运动过程中的位姿变化,构建空间流特征图像序列.通过分析跛行奶牛行走时躯体前进和左右摇摆的瞬时速度,利用光流捕获奶牛运动的瞬时速度,构建时间流特征图像序列.将空间流与时间流特征图像组合构建时空流融合特征图像序列.其次,利用卷积块注意力模块(Convolutional Block Attention Module,CBAM)改进PP-TSMv2(PaddlePad-dle-Temporal Shift Module v2)视频动作分类网络,构建奶牛跛行检测模型Cow-TSM(Cow-Temporal Shift Module).最后,分别在不同输..
简介:摘要 : 含水量是表征水稻生理和健康状况的关键参数,精确预测水稻含水量对于水稻育种和大田精准管理具有重要意义。目前,利用无人机搭载光谱图像传感器监测作物生长的研究主要集中在利用植被指数评估作物在单一或者几个生育期的生长参数,针对作物含水量监测的研究非常有限。本研究主要利用多旋翼无人机低空遥感平台获取不同生育期水稻冠层的 RGB图像和多光谱图像,通过提取植被指数和纹理特征,分析水稻的动态生长变化,并构建了基于随机森林回归方法的含水量预测模型。试验结果表明:( 1)从无人机图像提取的植被指数、纹理特征以及地面测量的含水量都能用于监测水稻生长,并且这些参数随水稻生长呈现出了相似的动态变化趋势;( 2)与 RGB图像相比,多光谱图像评估水稻含水量具有更高的潜力,其中归一化光谱指数 NDSI771,611实现了更好的预测精度( R2=0.68, RMSEP=0.039, rRMSE =5.24%);( 3)融合植被指数和纹理特征能够进一步改善含水量的预测结果( R2=0.86, RMSEP=0.026, rRMSE=3.51%),预测误差 RMSEP分别减小了 16.13%和 18.75%。上述结果表明,基于无人机遥感技术监测水稻含水量是可行的,可为农田精准灌溉和田间管理决策提供新思路。
简介:摘要 : 受经济和气候驱动,长江经济带水田空间格局发生了显著变化,影响区域粮食安全与生态安全。本研究基于 1990-2015年土地利用遥感监测数据,利用 GIS的空间分析功能,探究长江经济带水田空间格局动态变化特征,采用当量因子法计算生态系统服务价值( ESV),分析了水田变化的综合影响。结果表明: 1) 1990-2015年长江经济带水田规模持续缩减,共减少了 17390km2,减幅呈增长态势具有显著地域差异,长江中上游与下游的水田减幅相差约为 9.56%。其中下游减幅较大,水田占区域比例随之降低,中上游恰好相反。 2)由于经济建设及水产养殖的发展,水田主要转化为建设用地和水系,水田主要由水系、旱地和湿地等转化而来。长江三角洲城市群、长江中游及成渝城市群的水田变化最为剧烈,建设用地侵占水田扩张的现象分布广泛,水田转为水系主要在两湖平原局部地区。 3)水田与其他生态系统的转化对 ESV是正影响,水田转为水系对此贡献最大,其转化规模决定了不同时期 ESV净增量的大小,水系转化为水田损失的价值最多,建设用地侵占水田次之。不同市域的水田变化情况不一致,因此 ESV增减情况具有明显差异。 4)生态系统服务中水文调节、水资源供给增强的同时,食物生产、气体调节受到严重损害,与水资源规模扩大和水田资源大量流失有直接关系。研究结果有助于揭示长江流域水田的时空变化过程及其对各项生态系统服务的影响,可为区域土地利用规划、农业政策与生态可持续发展提供理论支持。