简介:车道线检测是智能驾驶系统的重要组成部分,它提供了车辆与车道位置关系的信息.针对智能车辆驾驶系统在视觉导航过程中车道线检测的精确性和鲁棒性的问题,提出一种有效的车道线检测方法.首先对原始RGB图像分别进行感兴趣区域设定、逆透视变换、灰度化和阈值处理;然后进行霍夫变换处理,利用斜率和中心点位置筛选检测结果;最后利用卡尔曼滤波对检测到的线段进行跟踪,预测当前车道线位置.实验结果表明,该算法能够有效解决图像中车道线不清晰以及一些干扰遮挡的问题,车道线检测准确率可达94%,具有较好的准确性、鲁棒性和较低的计算复杂度,有利于实时性检测系统的构建.
简介:基于傅里叶变换中红外光谱技术(FTIR),结合改进型偏最小二乘回归法(MPLS),建立豆奶中的快速预测方法。结果表明选取有效波段,不使用散射校正,使用导数和平滑校正光谱基线漂移后定标效果最好,各指标的预测值与实测值相关性良好,脂肪(Fat)、蛋白质(Protein)、蔗糖(Sucrose)和总糖(TotalSugar)预测标准偏差(SEP)分别为0.061、0.039、0.039、0.047;预测相关系数(RSQ)分别为:0.98、0.99、0.99、0.99。该方法可应用于豆奶中脂肪(Fat)、蛋白(Protein)、蔗糖(Sucrose)和总糖(TotalSugar)含量的快速分析检测。
简介:利用MALDI-TOF-MS法测定了谷胱甘肽S-转移酶的分子量,并讨论和对比了三种不同基质对其影响,认为用α-氰基-4-羟基肉桂酸(α-CHC)作基质是最佳适宜条件。实验结果表明本方法优于其它传统的测定生物大分子分子量方法。
简介:建立了蔬菜中八氯二丙醚(S-421)农药残留的气相色谱-质谱分析方法。样品采用乙腈提取,氯化钠盐析分层,取部分提取液使用氮气吹干,以正己烷溶解,加浓硫酸进行净化,最后用气相色谱-质谱法进行定量定性分析。在三个添加水平的八氯二丙醚(S-421)平均回收率(n=5)为86%~102%,相对标准偏差为3.2%~6.4%。该方法的检出限为0.005mg/kg。
简介:LDA主题模型是文本挖掘领域的重要算法,同时在推荐系统当中也有不错的表现.通过LDA主题模型挖掘用户感兴趣的主题,是目前最常用的用户兴趣主题挖掘方法之一.为了提高LDA主题模型应用在推荐系统时的推荐质量,我们提出了一种基于负样本进行学习的方法negLDA.通过创造出负样本来学习用户对物品的负面预测评分,同时结合正样本学习得到的正面预测评分,从正反两个方面进行综合评测,从而更加精确地衡量出用户对物品的预测评分.通过在MoviesLens-100k、MovieLens-1M、FilmTrust这三个数据集上的实验,表明所提出的算法在精确率、召回率、AUC三个指标上相比传统算法均有一定改进.