学科分类
/ 2
32 个结果
  • 简介:为研究鱼雷涡轮机转子系统的瞬态动力学特性,结合实际启动工况,采用传递矩阵法建立了转子系统的瞬态运动方程,并用Newmark-β数值积分方法进行求解,模拟分析了不同启动过程中转子的瞬态响应历程.结果显示:考虑不同函数形式的(线性、指数、分段)升速过程时,涡轮转子系统各阶临界转速没有显著差异,但共振峰值以及震荡收敛时间差别较大.其中,最符合实际工况的是分段函数形式的升速过程,该过程过二阶临界转速的共振峰值最小.本文的工作可以为鱼雷涡轮转子系统的优化设计提供参考.

  • 标签: 鱼雷涡轮机 转子系统 瞬态响应 传递矩阵法 Newmark-β积分法
  • 简介:利用加性掩盖和函数调制两混沌加密方式对模拟信号进行加密,分别从幅值和频率两方面分析加性掩盖方式和函数调制方式,对比两加密方式加密效果,了解两加密方式的差异.计算结果表明:函数调制方式在幅值和频率的范围上都好于加性掩盖方式的幅值和频率范围,函数调制方式比加性掩盖方式更具安全性.

  • 标签: 混沌加密 加性掩盖 函数调制 模拟信号
  • 简介:针对结构动力方程转化为状态空间方程后矩阵维数增加而导致计算量增大的问题,考虑状态空间方程中所含外部荷载的特点,提出了一新的改进精细直接积分法.给出了利用梯形公式、复化梯形公式、辛普生公式、复化辛普生公式、科特斯公式、高斯公式计算杜哈姆积分时的计算格式,分析了不同计算格式下的计算精度和计算效率.数值算例表明本文改进方法的正确性.

  • 标签: 结构动力方程 直接积分 分块计算 精细积分 改进方法
  • 简介:基于两齿轮碰撞模型进行数值和实验的研究比较:(1)含啮合间隙的刚性碰撞齿轮系统,假设轮齿间的碰撞在瞬间完成,边界为刚性;(2)含弹性约束和啮合间隙的弹性碰撞齿轮系统,空隙范围内部齿轮自由运动,边界为弹性,用无质量弹簧一阻尼器描述.文中主要通过实验研究对两齿轮接触模型的动力学响应进行分析比较:首先用实验结果验证数值仿真的正确性,之后对两不同的齿轮传动系统在不同参数下的实验数据和仿真结果分别进行比较,并对两不同的齿轮传动系统所展现的复杂动力学现象进行分析.

  • 标签: 齿轮传动 碰撞 实验 频谱
  • 简介:对于大型二维稳态声场问题,本文提出了一基于间接Trefftz方法的波数法.在该方法中,声压响应解用一组精确满足Helmholtz控制方程的波函数通解和由外部激励在自由空间产生的特解来近似表示.通过在边界上采用加权余量法得到各个波函数的系数,从而得到所求声场的声压响应.一个60m×40m的大型声场算例表明,得到相同精度和收敛性的结果时,波数法比BEM所需的自由度少.

  • 标签: 加权余量法 声学 Trefftz方法 BEM
  • 简介:提出一新的类Lorenz系统,它具有维二次型的自治常微分方程组形式.理论分析中,应用Lyapunov判定方法研究了系统平衡点的稳定性.在此基础之上,数值仿真表明,文中所考查的动力学系统具有极其丰富的动力学现象,包括混沌和多种形式的周期运动形式.文中还分析了两个重要参数对系统稳定性的影响,并通过构建一个受控系统分析了系统混沌吸引子的形成机制.

  • 标签: 类LORENZ系统 混沌 形成机制 稳定性
  • 简介:研究了一含有绝对值项的维微分动力系统,用李雅普诺夫方法得到了系统发生第一次Hopf分岔的条件.利用相轨迹图、分岔图、最大李雅普诺夫指数谱等非线性动力学分析方法,分析了该系统从规则运动转化到混沌运动的规律.该系统是按照Feigenbaum途径(倍周期分岔)通向混沌的,在混沌区域存在周期窗口.当参数达到激变临界点时,混沌吸引子和不稳周期轨道在吸引子边界上碰撞,发生边界激变,激变临界值的领域内还存在相对长时间的瞬态混沌过程.

  • 标签: 带绝对值项系统 分岔 激变 混沌 倍周期分岔
  • 简介:建立了道路岔口处车辆分流时的一流体力学格子模型.推导出了该模型的线性稳定性条件.通过非线性稳定性分析得到MKdV方程,进而可用MKdV方程的扭结.反扭结解去描述交通阻塞现象.结果显示:主干道车辆换道率的增加能够使共存曲线下降,从而起到提高主干道车流的稳定性的作用.

  • 标签: 交通流格子模型 岔路口 分流 MKDV方程 孤立波
  • 简介:基于压电效应设计了一包含屈曲梁、质量块和非线性弹簧的新型压电俘能器结构,并对其进行了振动响应分析.首先基于Euler—Bernoulli梁理论,利用Hamihon原理建立了压电俘能器结构的非线性动力学方程,通过Galerkin离散后数值分析了结构参数对系统一阶固有频率的影响;进一步利用多尺度法对系统进行摄动分析,研究了系统的稳态幅频特性,数值分析了各系数对幅频响应曲线的影响,结果表明该结构在简谐激励作用下会存在多种跳跃现象;最后数值分析了压电俘能器的发电性能,讨论了激励幅值和初始静挠度对发电电压的影响.

  • 标签: 能量采集 屈曲梁-质量-弹簧系统 幅频特性 非线性振动
  • 简介:本文利用基于线性系统稳定性准则的SC混沌比例投影同步方法,提出一全新的多进制数字信息混沌保密通信方案.将多进制数字信号调制到发送端系统的雅克比矩阵和比例因子中,然后在接收端构造的子系统中判断并解调出数字信号.以传输10进制数字信息为例,利用Lorenz混沌吸引子进行数值模拟仿真,详细分析了通信过程中数字信息的同步性、安全性以及解码精度.仿真结果和数值分析证明了该多进制数字信息混沌调制方案的正确性和有效性.

  • 标签: 保密通信 混沌调制 数字信息 投影同步 雅克比矩阵
  • 简介:摄动法近似应当保辛.本文指出,有限元位移法自动保辛,有限元混合能表示也保辛.摄动法的刚度阵Taylor级数展开能证明保辛;混合能的Taylor级数展开摄动也证明了保辛.但传递辛矩阵的Taylor级数展开摄动却不能保辛.辛矩阵只能在乘法群下保辛,故传递辛矩阵的保辛摄动必须采用正则变换的乘法.虽然刚度阵加法摄动、混合能矩阵加法摄动与传递辛矩阵正则变换乘法摄动都保辛,但这3摄动近似并不相同.最后通过数值例题给出了对比.

  • 标签: Taylor级数展开 数值比较 正则变换 辛矩阵 混合能 矩阵加法
  • 简介:将同伦理论和参数变换技术相结合提出了一可适用于求解强非线性动力系统响应的新方法,即PE-HAM方法(基于参数展开的同伦分析技术).其主要思想是通过构造合适的同伦映射,将一非线性动力系统的求解问题,转化为一线性微分方程组的求解问题,然后借助于参数展开技术消除长期项,进而得到系统的解析近似解.为了检验所提方法的有效性,研究了具有精确周期的保守Duffing系统的响应,求出了其解析的近似解表达式.在与精确周期的比较中,可以得出:在非线性强度α很大,甚至在α→∞时,近似解的周期与原系统精确周期的误差也只有2.17%.数值模拟结果说明了新方法的有效性.

  • 标签: 系统响应 DUFFING系统 非线性动力系统 线性微分方程组 求解问题 非线性强度
  • 简介:本文利用基于Simulink的数值模拟方法研究了高斯色噪声激励下势阱系统的逻辑随机共振现象.首先对于独立的加性和乘性高斯色噪声激励下的势阱系统,发现仅有加性噪声作用不能实现可靠的逻辑操作,但加性噪声和乘性噪声共同作用可诱导良好的逻辑随机共振现象.和高斯白噪声相比较,高斯色噪声激励下能产生可靠逻辑随机共振的(D,Q)平面上的区域范围更大.进一步讨论了加性和乘性噪声之间的关联对于逻辑随机共振现象的影响,发现噪声关联对逻辑随机共振现象起着破坏性的作用.

  • 标签: 逻辑随机共振 三势阱系统 高斯色噪声
  • 简介:研究一类具有维自治常微分方程组形式的新的类Chen系统的余维二分岔.首先通过坐标变换,把原系统的平衡点平移到新系统的原点.通过对平移后所得新系统的Jacobi矩阵的分析,推导系统发生余维二Bautin分岔的参数条件.借助计算机对类Chen系统进行数值仿真,得到该系统发生Bautin分岔的分岔图,与理论推导结果相符合,从而验证了理论推导的正确性.

  • 标签: 类chen系统 余维二 Bautin分岔 数值仿真
  • 简介:工程中存在着大量的具有迟滞非线性恢复力的结构与构件,但迟滞非线性系统既是非线性的,又是非解析的,造成其参数识别十分困难,阻碍了迟滞非线性模型在工程中的应用.本文提出了一基于小生境遗传算法的迟滞非线性系统参数识别方法,该方法在遗传算法中引入了新的参数——个体活动半径.利用本算法对一木结构剪力墙的BW模型参数进行识别,识别结果误差较小,验证了算法的有效性。

  • 标签: 迟滞非线性系统 参数识别 遗传算法 小生境 工程力学
  • 简介:提出了一个馈能主动控制系统的设计方案,首先给出了一馈能主动控制的电机作动器的驱动方式,使得作动器能够在工作模式下进行功能切换.其次,分析了模式的工作时间比与能量平衡之间的关系,给出了能够实现能量平衡的基本条件,并得到了系统达到能量平衡的条件.最后,通过一个馈能主动控制系统设计的算例验证了方法的可行性.仿真结果表明,该主动控制系统能够有效降低振动激励的干扰,并且能够达到能量平衡,即不需要外部的能量供给.

  • 标签: 能量回馈 主动控制 能量平衡 电机作动器
  • 简介:电磁弹射技术一直是世界发达国家竞相发展的高新技术,电磁弹射器将代替目前航母上使用的蒸汽弹射器.本文从舰载飞机起飞运动分析入手,以磁悬浮导轨技术和永磁无刷直线电机技术运用到磁悬浮电磁弹射设计中,简述了该项技术的基本原理、组成及其特点,并对悬浮电磁弹射系统进行分析.

  • 标签: 电磁弹射 EMALS 磁悬浮 永磁无刷直线电机
  • 简介:构建了带有延迟的脉冲控制的维股票价格系统,研究了脉冲控制参数和延迟变化对股票价格的稳定性影响.应用脉冲微分方程控制稳定性理论,得到了在带有延迟的脉冲控制系统中,由原先的不稳定和发散达到稳定的保守且充分的条件,从而使股票金融市场达到了一个新的持续发展的稳定状态.利用Matlab软件对该系统进行数值仿真,验证了脉冲控制方法的可行性,有效性和提出理论的准确性.结果表明合理脉冲控制可以有效控制带延迟系统的稳定性.

  • 标签: 延迟 股票价格系统 脉冲微分方程 控制 稳定性