学科分类
/ 1
9 个结果
  • 简介:提高大气层内具有复杂弹道特性的飞行器外测弹道数据处理精度一直是困扰研究学者和数据处理人员的课题.本文应用已有的数据融合理论,结合大气层内机动飞行器的运动特性,提出了一种基于分段三次样条函数的外弹道数据融合处理算法.仿真和实测处理结果表明:该算法显著地提高了数据处理精度,在相关数据处理任务中具有一定的应用价值.

  • 标签: 数据融合 数据处理 样条函数
  • 简介:在外弹道数据处理中,奇异点处理、特征点求取与随机误差削弱都是精度估计的关键环节.本文首先利用小波变换在处理奇异点、特征点、噪声消除方面的优势,对观测数据进行基于小波变换的分解、融合、重构处理,剔除奇异点,查找特征点,削弱随机误差.其次利用节点自由分布B样条描述导弹运动轨迹,使该弹道确定方法转化为关于求解导弹轨道样条表示参数和测量系统误差的多模融合的非线性优化问题,采用非线性最优化方法,进而得到待估参数的最优估计,完成弹道的最佳逼近.仿真结果表明,该技术应用在奇异点处理、特征点提取与随机误差削弱方面效果较好,多模融合算法能减少计算量,且能切实提高参数估计精度.

  • 标签: 小波变换 样条分频 信息重构 数据融合
  • 简介:提出了一个馈能主动控制系统的设计方案,首先给出了一种馈能主动控制的电机作动器的驱动方式,使得作动器能够在三种工作模式下进行功能切换.其次,分析了三种模式的工作时间比与能量平衡之间的关系,给出了能够实现能量平衡的基本条件,并得到了系统达到能量平衡的条件.最后,通过一个馈能主动控制系统设计的算例验证了方法的可行性.仿真结果表明,该主动控制系统能够有效降低振动激励的干扰,并且能够达到能量平衡,即不需要外部的能量供给.

  • 标签: 能量回馈 主动控制 能量平衡 电机作动器
  • 简介:电磁弹射技术一直是世界发达国家竞相发展的高新技术,电磁弹射器将代替目前航母上使用的蒸汽弹射器.本文从舰载飞机起飞运动分析入手,以磁悬浮导轨技术和永磁无刷直线电机技术运用到磁悬浮电磁弹射设计中,简述了该项技术的基本原理、组成及其特点,并对悬浮电磁弹射系统进行分析.

  • 标签: 电磁弹射 EMALS 磁悬浮 永磁无刷直线电机
  • 简介:蜂窝夹层结构因其良好的力学特性,在众多工程领域具有非常广泛的应用.本文建立了悬臂边界条件下,蜂窝夹层板的动力学模型并研究其非线性动力学行为.选取文献中更加接近实体有限元解的等效弹性参数公式对蜂窝芯层进行等效简化,得到六角形蜂窝芯的等效弹性参数.基于Reddy高阶剪切变形理论,应用Hamilton原理建立悬臂蜂窝夹层板在受到面内激励和横向激励联合作用下的偏微分运动方程.然后利用Galerkin方法得到两自由度非自治常微分形式运动方程.在此基础上,通过对悬臂蜂窝夹层板进行数值模拟分析系统的非线性动力学.结果表明面内激励和横向激励对系统的动力学特性有着重要影响,在不同激励作用下系统会出现周期运动、概周期运动以及混沌运动等复杂的非线性动力学响应.

  • 标签: 蜂窝夹层板 悬臂 非线性动力学 周期 混沌
  • 简介:研究了电磁与机械载荷共同作用下梁薄板的非线性超谐波共振问题.在给出薄板的电磁弹性运动基本方程及电磁力表达式的基础上,推得了横向稳恒磁场和机械载荷共同作用下梁薄板的振动方程;应用伽辽金积分法,进一步导出了相应的非线性振动控制微分方程.采用多尺度法进行求解,得到了稳态运动下的幅频响应方程.最后,通过算例,给出了相应的幅频响应曲线图和时间历程图,分析了板厚、磁场及激励幅值对系统振动的影响.

  • 标签: 磁弹性 导电梁式板 磁场 非线性超谐波共振 多尺度法 机械载荷
  • 简介:圆射流碎裂过程的理论研究对于发动机喷雾与燃烧科学研究至关重要,线性稳定性理论是对射流碎裂过程研究的一种重要方法.论述了粘性圆射流在不可压缩气体介质中的线性稳定性理论分析,应用液、气相的线性化纳维-斯托克斯量纲一控制方程组和量纲一化的线性运动学和动力学边界条件,采用对动量方程点乘哈密顿算子的方法,推导出了n阶量纲一色散准则关系.

  • 标签: 线性稳定性理论 圆射流 n阶色散关系式 修正贝塞尔方程
  • 简介:柔性飞行器在飞行过程中容易发生大变形,这种变形将导致机翼甚至整个飞行器的气动弹性和飞行动力学特性发生变化,特别是对稳定性的影响.本文采用三段刚体假设,以变上反角的方式来描述机翼的展向弯曲变形,对一类飞翼柔性飞行器进行了纵向动力学建模,并进一步分析了操纵面、推力和迎角与上反角的关系,以及变上反角对飞行稳定性的影响.结果表明,在保持速度和高度不变的情况下,稳定性受上反角的影响比较明显,如果变形过大,飞行器将变为动不稳定,且短周期模态不能保持.因此,为了保持飞机的纵向稳定性,必须要控制飞机的变形.

  • 标签: 柔性飞行器 上反角 动力学建模 稳定性
  • 简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)型隐有限差分格式以及微分的四阶中心差分格式,将两者相结合,得到FPK方程的四阶中心C-N隐格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.

  • 标签: 非线性系统 FPK方程 有限差分法 可朗克-尼考尔逊隐式差分格式